
Identifying modularity
improvement opportunities in

goal-oriented requirements models
Catarina Gralha, Miguel Goulão, João Araújo

CITI, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Portugal
acg.almeida@campus.fct.unl.pt
{mgoul, joao.araujo}@fct.unl.pt

Roadmap

Introduction i* framework Metrics Evaluation Conclusions

Introduction

Introduction
• Goal-oriented Requirements Engineering (GORE)

• Great impact and importance in the Requirements Engineering community
• Provide expressive model elements for requirements elicitation and analysis
• i*, KAOS, GRL

• The models can quickly become very complex

• Manage the accidental complexity of the models is a challenge

• Identify refactoring opportunities to improve the modularity of those models,
and consequently reduce their complexity

Objectives

•To provide a tool supported metrics suite, targeted to the
measurement and analysis of the complexity of i* models, for
identifying modularity refactoring opportunities

•The identification of such opportunities can be useful during
development, where a better modularization can lead to a sounder
distribution of responsibilities among the system components
• If performed in a timely fashion, this is likely to contribute to relevant costs
savings through the reduction of the model’s accidental complexity

• Refactoring opportunities identification is also an asset in the context of
preventive maintenance, as a facilitator for future requirements changes

The Approach

Improve the
modularity

of i* models
and reduce

their
complexity

Metrics Set

Informal
definition

Formal
definition

i* modelling
tool

i* models
creation

Metrics
collecting

Metrics
evaluation

Case studies
set

Statistics
analysis

About the metrics suite
• The metrics suite is integrated in an eclipse-based i* editor, so that metrics
can be computed during the requirements modelling process, whenever the
requirements engineer requests them

• The metrics are defined using the Object Constraint Language (OCL) upon the
i* metamodel

• This makes our metrics set easily extensible, as improving the metrics set can
be done by adding new OCL metrics definitions

• Actor’s boundaries are a key mechanism in the metrics suite proposed here.
Our goal is to use these metrics to leverage the modularity of i* models.

i* Framework

i* Framework
Approach focused on the system stakeholders and in their relations

Developed for modelling and reasoning about organizational environments

SR Model (Strategic Rationale) SD Model (Strategic Dependency)

i* Metamodel

Metrics

Complexity Metrics Definition

Q1 Q2 Q3 Q4 Q5

Complexity

M1

M2

M3

M4

M5

M6

M7

M8

M9

M10

M11

M12

M13

M14

M15

M16

M17

M18

How complex is the model,
concerning the number of

actors and elements?

Does an actor
have too much
responsibility?

How complex is a goal,
with respect to its
decompositions?

How complex is a task
with respect to its
decompositions?

How complex is a
softgoal, with respect
to its decompositions?

Conceptual
Level

Operational
Level

Quantitative
Level

Number of
actors

Number of
elements

Number of
elements

inside
Minimum
number

Maximum
number

Average
number

Number of
decompositions

Minimum
number

Maximum
number

Average
number

Metrics Definition for Q1

Q1 - How complex is the model, concerning the number of actors and elements?
Name NAct – Number of Actors
Informal definition Number of actors in the SD/SR model
Formal definition context ISTAR

def:NAct():Integer = self.hasNode ->
select(n:Node | n.oclIsKindOf(Actor)) -> size()

Name NElem – Number of Elements
Informal definition Number of elements in the SD/SR model
Formal definition context ISTAR

def:NElem():Integer = self.NEOAB() + self.NEIAB()

Requires NEOAB – Number of Elements Outside Actors’ Boundary
NEIAB – Number of Elements Inside Actors’ Boundary

Some Metrics Definition for Q2
Q2 - Does an actor have too much responsibility in the model?
Name NEA – Number of Elements of an Actor
Informal definition Number of elements inside an actor’s boundary in the SR

model
Formal definition context Actor

def:NEA():Integer = self.hasElement -> select(e :
Element | e.oclIsKindOf(Element)) -> size()

Name AvgNEA – Average Number of Elements of an Actor
Informal definition Average number of elements inside an actor’s boundary in

the SR model
Formal definition context ISTAR

pre:self.NAct() > 0

context ISTAR
def:AvgNEA():Real = self.NEA() / self.NAct()

Requires NEA – Number of Elements of an Actor
NAct – Number of Actors

Tool Prototype

1

2

3 4 5 6 7

8 9 10 11 12 13 14 15

16 17 18

1

2
3

1

2

1

3

4/2

1

2

Evaluation

Case Studies

HC: Health Care HPA: Health Protection Agency MD: Media Shop

NATS: National Air Traffic Services NO: Newspaper Office

Number of Actors and Elements in the System

Number of Actors Number of Elements

Goal Decomposition per Actor

HC has a higher ratio than all the
other systems, which have very
similar ratios.
This may suggest that HC could be
an interesting candidate for
refactoring.
In contrast, we note that the most
complex system, in terms of size, has
the lowest element/actor density,
suggesting a good overall modularity

Number of Decompositions of a Goal

Number of Decompositions of a Softgoal

Civil ATCO may have too
many responsibilities. A
typical refactoring would be
to decompose the actor
into sub-actors

Number of Decompositions of a Task

It may also be the case
that the requirements
engineer may
over-decompose these
goals, softgoals, or tasks,
by following a functional
decomposition strategy,
leading to poor
modularity. This is similar
to the functional
decomposition
anti-pattern

Conclusions and Future Work

Conclusions
• The questions allow evaluating the complexity of a model as a whole

• Evaluating complexity at early stages allows avoiding eventual extra costs
• during the later stages of software development
• during software maintenance and evolution

• The realization that the modularity of a requirements model can be improved
can trigger requirements refactoring opportunities

• The results of these metrics reveal a pattern of usage in goal modelling
concerning modularity of those models

Future Work
• Replicate this evaluation with other i* models

• Extend the metrics set to cover other model quality attributes

• Identify thresholds for suggesting merging and decomposing model elements

• Conduct an experiment with requirements engineers
• Assess the extent to which those thresholds are correlated with an increased difficulty in i*

model comprehension
• Define and apply refactoring patterns for GORE models

• Implement different views and analyse each view separately

Thank you.
Questions?

