
A Systematic Comparison of i*
Modelling Tools Based on Syntactic

and Well-formedness Rules

Catarina Almeida, Miguel Goulão, João Araújo

CITI, FCT, Universidade Nova de Lisboa, Portugal

acg.almeida@campus.fct.unl.pt

{mgoul, joao.araujo}@fct.unl.pt

Roadmap

• Introduction

• Objectives of the Research

• Analysed Tools

• i* Syntax Converage

• Well-formedness Rules

• Conclusions

Introduction (I)

• There are several i* variations: Yu'95,
TROPOS, Secure Tropos, Iterative Tropos,
GRL

• There are several tools available to create i*
models

• Different tools provide different kinds of
support for the specification of an i* model

Introduction (II)

The wiki page includes a comparison of the i*
tools, which covers:

o the purpose of the tool

o the i* framework it supports

o details on availability, base platform, maturity

o details on the tool modelling suitability, usability,

extensability and interoperability

We present: a comparison of syntactic and
semanctic features supported by the
different i* tool

Objectives of the Research

Answer two research questions:

RQ1: Which of the syntactic constructs
described in the i* wiki are supported by each i*
tool?

RQ2: To what extent does each i* tool
support semantic checking of the i* models
built using it?

Analysed Tools (I)

Inclusion criteria:
o Presence in the i* wiki page

o Availability of a functional URL

i* Tool Institution i* Variant Platform Technology

OpenOME Univ. Toronto Yu'95 All Java (JRE)

TAOM4E Univ. Trento Tropos All Eclipse plug-in

GR-Tool Univ. Trento Tropos All Java (JRE)

STS-Tool Univ. Trento Trops All Java (JRE)

jUCMNav Univ. Ottawa GRL All Eclipse plug-in

DesCARTES U. C. Louvain Yu'95 / Tropos All Eclipse plug-in

Analysed Tools (II)

OpenOME

 Eclipse-based tool designed to support goal-oriented,

agent-oriented and aspects-oriented modelling and
analysis

TAOM4E

 Eclipse plug-in that supports a model-driven, agent-

oriented software development

Analysed Tools (III)

GR-Tool

 Graphical tool for forward and backward goal reasoning

in Tropos

STS-Tool

 Socio-technical security modelling tool to draw Tropos

and Secure Tropos models and to perform the effective
formal analysis of functional and security requirements

Analysed Tools (IV)

jUCMNav

 Eclipse plug-in for modelling, analysis and

transformation in both GRL and UCM (Use Case Map)

DesCARTES

 Eclipse plug-in that allows the development of the

methodology analysis and design models as well as
forward engineering capabilities and an integrated
software project management module

i* Syntax Coverage (I)

Aims to check if the tool has:

a) the basic i* syntax, and

b) the graphical notation of the i*

(according to the i* wiki page)

i* Syntax Coverage (II)
Elements

TAOM4E

DesCARTES

i* Syntax Coverage (III)
Links and Contribution Links

GR-Tool STS-Tool DesCARTES

i* Syntax Coverage (IV)
Discussion

• All the tools support goals, the "and" link
and have at least two types of contribution
links

• It is in the contribution links that the
variation of the graphical notation is higher

• OpenOME is the tool with the widest syntax
coverage according to the two criteria

Well-formedness Rules (I)

• Determine the level of correctness checking
of the created models (using the descriptions and

guidelines available in the i* wiki page)

• Analyse if the tool checks when a modelling
error is made

Well-formedness Rules (II)
Actors and Dependencies

Well-formedness Rules (III)
Associations

Well-formedness Rules (IV)
Internal Elements

Well-formedness Rules (V)
Contribution Links

Well-formedness Rules (VI)
Discussion

• On average, about 39% of the considered
modelling erros are not applicable

• jUCMNav has the highest number of verified
errors, with a verification percentage of 50%,
followed by OpenOME and TAOM4E

Conclusions

• The tools present a great variation of the i*
syntax, usually alligned with one of the i*
frameworks

• Error detection is not a common practice,
since that less than 50% of the errors are
verified

Questions

