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Abstract—Context: i* is one of the most influential languages
in the Requirements Engineering research community. Perhaps
due to its complexity and low adoption in industry, it became a
natural candidate for studies aiming at improving its concrete
syntax and the stakeholders’ ability to correctly interpret i* mod-
els. Objectives: We evaluate the impact of semantic transparency
on understanding and reviewing i* models, in the presence of
a language key. Methods: We performed a quasi-experiment
comparing the standard i* concrete syntax with an alternative
that has an increased semantic transparency. We asked 57
novice participants to perform understanding and reviewing
tasks on i* models, and measured their accuracy, speed and
ease, using metrics of task success, time and effort, collected
with eye-tracking and participants’ feedback. Results: We found
no evidence of improved accuracy or speed attributable to the
alternative concrete syntax. Although participants’ perceived ease
was similar, they devoted significantly less visual effort to the
model and the provided language key, when using the alternative
concrete syntax. Conclusions: The context provided by the model
and language key may mitigate the i* symbol recognition deficit
reported in previous works. However, the alternative concrete
syntax required a significantly lower visual effort.

Index Terms—social goal models, i*, physics of notations, eye-
tracking

I. INTRODUCTION

Requirements Engineering (RE) success depends on, among
several other factors, the quality of the communication be-
tween requirements engineers and other stakeholders. Indeed,
communication flaws are among the most frequently reported
RE problems that may lead to project failure [1]. One of
the key elements of an effective communication is the lan-
guage used. Visual notations are often adopted, as they are
perceived as more effective for conveying information to non-
technical stakeholders than text [2]. However, the visual syntax
of software engineering languages has historically played a
secondary role when comparing alternative visual notations for
Software Engineering [3]. The confounding effect potentially
played by language syntax is often not considered, when
comparing languages. In his seminal paper on the “Physics”
of Notations (PoN) [3], Moody proposed a set of principles
to support the evaluation, comparison, improvement and con-
struction of visual notations for Software Engineering. His pro-
posal focused on how to visually represent a set of constructs
whose semantics had been previously defined. A core concept,
adopted from [4], is the notion of cognitive effectiveness,
which can be defined as the accuracy, speed, and ease with

which a representation can be processed by the human mind.
Semantic transparency, together with the remaining 8 PoN
principles, can lead to cognitive effectiveness. It is defined as
“the extent to which the meaning of a symbol can be inferred
from its appearance” [3].

Several studies were conducted on languages such as UML
[5, 6], BPMN [7, 8], KAOS [9] or i* [10, 11], to identify
improvement opportunities for those languages, by detecting
problems concerning their concrete syntax and proposing
solutions to mitigate them. Those studies focused on the
stakeholders’ ability to correctly recognise individual language
symbols. However, software engineers use models, rather than
their individual symbols, for communication.

In this paper, our objective is to compare the ability of
stakeholders to understand and review social goal models
using two concrete syntaxes: (i) the “official” i* concrete
syntax, and (ii) an alternative i* concrete syntax, with an
increased semantic transparency (that resulted from the series
of experiments reported in [11]). In particular, we performed
a quasi-experiment to analyse the effect of changing the i*
concrete syntax, evaluating the semantic transparency impact
on both the understandability and the ability to review i*
models, in the presence of a language key. Differently from
previous studies, we perform our evaluation at the model level,
rather than through isolated symbol recognition tasks.

A total of 57 novice participants (surrogates for stakeholders
other than requirements engineers) performed understanding
and reviewing tasks on i* models. We measured the accuracy,
speed, and ease with which they accomplished their tasks. We
found no evidence of improved accuracy or speed attributable
to the alternative i* concrete syntax, but found that working
with this concrete syntax required significantly lower visual
effort. This suggests that the usage of those symbols, in the
context of models, and the presence of a language key, may
have mitigated the i* symbol recognition deficit consistently
reported in previous works, to the point that it had no
observable effect in the accuracy, or speed, with which our
participants performed understanding and reviewing tasks.

Section II presents the two concrete syntaxes contrasted
in this paper. Section III reports the experiment planning,
including goals, participants, experimental material, tasks,
hypotheses, design, procedure, and analysis procedure. Section
IV describes the experiment execution, with the preparation
and deviations from the plan. Section V analyses the results,



including descriptive statistics, dataset preparation, and the re-
sults of hypothesis testing. Section VI discusses the results and
reports threats to validity and inferences. Section VII presents
the related work. Finally, Section VIII draws conclusions and
points directions for future work.

II. I* STANDARD AND CANDIDATE NOTATIONS

The i* [12] framework was designed for modelling and
analysis of organisational environments and their information
systems. Intentional actor is the central concept of the ap-
proach. Actors are viewed as having intentional properties
such as goals, beliefs, abilities and commitments. i* has two
main models: the Strategic Dependency (SD) and the Strategic
Rationale (SR). The SD model describes the dependency
relationships among the actors in an organisational context. An
actor (the depender) depends on another actor (the dependee)
to achieve goals and softgoals, to perform tasks and to obtain
resources. The SR model focuses on modelling intentional
elements and relationships internal to actors.

Although well-known in the RE community, i* is, as most
other requirements languages, poorly understood by novice
users [11]. In this paper we explore the extent to which this
problem can be mitigated by using an alternative concrete syn-
tax for i*, with an increased semantic transparency. Research
on visual languages design principles and evaluation has the
potential for significantly improving the languages’ adoption.
One of the ways to improve the cognitive effectiveness of a
notation is to increase the semantic transparency of its sym-
bols. Semantic transparency defines the degree of association
between the syntax (form) and semantic (content) of a symbol
[3]. However, the i* language concrete syntax, as described in
the i* Wiki1, has been shown to be semantically opaque [10],
as its symbols are abstract geometrical shapes (Fig. 1). In this
paper, we will refer to this concrete syntax as “standard” i*2.

Fig. 1: Standard i* symbol set

The identification of this shortcoming in the concrete syntax
of i* led to the development of an alternative concrete syntax
built upon the PoN principles, to make it more semantically
transparent [10]. Later, Caire et al. reported a series of empiri-
cal evaluations involving the “standard” i* and three alternative
candidates: (i) the symbols designed by experts following the
PoN principles [10], (ii) the symbols more frequently designed
by novices in the context of a symbolisation experiment, and
(iii) the symbols more frequently chosen by subjects, among
those designed by other novices [13].

Those four concrete syntaxes were then tested to determine
which symbols were more frequently correctly identified in
a blind interpretation experiment to evaluate the semantic

1http://istar.rwth-aachen.de/
2http://istar.rwth-aachen.de/tiki-index.php?page=iStarQuickGuide

transparency and cognitive load involved in recognising the
symbols from the various i* concrete syntaxes. The semantic
transparency significantly increased symbol recognition and
decreased interpretation errors [11]. The symbol interpretation
results were reported in such a way that it allowed us to choose
the most frequently recognised symbol for each language
construct (i.e., those with the highest semantic transparency
coefficient), leading to a proposed i* notation, referred in this
paper as “new” i* concrete syntax (Fig. 2).

Fig. 2: New i* symbol set [11]

We selected the best evaluated symbols in Caire et al.’s
experiments for each i* construct [11]. As these symbols
were selected independently from each other, they do not
necessarily form a consistent set, in terms of the chosen
visual metaphors, when compared to what an expert designer
would be able to produce. Further research is required to study
how an inconsistent set of symbols impacts the overall model
understanding. Furthermore, these symbols might be difficult
to draw by hand. In this paper, we are only covering model
reading, with models built using an i* editor. Thus, although
important, the difficulty in drawing symbols by hand was not
an issue in the present study.

III. EXPERIMENT PLANNING

A. Goals

We describe our two research goals following the GQM
research goals template [14]. Our first goal (G1) is to analyse
the effect of changing the i* concrete syntax, for the purpose
of evaluation, with respect to its semantic transparency impact
on the understandability of i* SR models, from the viewpoint
of researchers, in the context of an experiment conducted
with participants with limited or no experience with i* at our
University. Our second goal (G2) is to analyse the effect of
changing i* concrete syntax, for the purpose of evaluation,
with respect to its semantic transparency impact on the review
of i* SR models, from the viewpoint of researchers, in the
context of an experiment conducted with the same participants.

Because we are comparing the effect of semantic trans-
parency of two concrete syntaxes for the same abstract syntax,
we can break down each goal into three sub-goals (G1.1,
G1.2, G1.3, G2.1, G2.2, and G2.3), concerning the effect of
those two concrete syntaxes, in terms of speed, accuracy and
ease. So, the refined goals can be obtained by replacing the
term understandability (or review) with speed to understand,
effectiveness to understand and ease to understand (or speed
to review, effectiveness to review and ease to review).

B. Tasks

Before starting, each participant read and signed a letter
of consent, adapted from [15]. Then, they saw a video with
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a small tutorial on i*, covering all the model elements used
in this evaluation. There were two versions of this video with
exactly the same audio, but with the examples being presented
in the standard i* concrete syntax, or with the new i* concrete
syntax. Naturally, participants saw the video matching the
concrete syntax they were about to use, in the evaluation.

Each participant in this study had to complete two tasks:
understanding an i* SR model from a Goods Acquisition
domain and reviewing an i* SR model from a Tolls System
domain. In the understanding task, the participant had to
analyse a correct i* SR model and answer a question about it.
In the reviewing task the participant had to analyse an incorrect
i* model and describe all the defects (s)he could identify.
We deliberately introduced syntactic defects in the model.
However, we have only informed the participants that their
task was to find “defects”, since describing explicitly the type
of defects they should be looking for would have introduced
a bias in the participants attention. This way, each participant
was free to review the model using his best judgement, as a
stakeholder new to i* would.

In both tasks, the answers were recorded in audio, and we
collected eye-tracking data while the participant was analysing
each model. No eye-tracking feedback was visible to the
participant, as this would be an unnecessary validity threat to
the results. We also did not provided feedback on the extent
to which participants were able to successfully complete the
tasks, preventing possible contamination to subsequent tasks.

After each evaluation, participants filled in a NASA-TLX
questionnaire [16, 17] to collect feedback on his perceptions
with respect to the task he had just performed. In the end, each
participant provided some basic demographic information.

C. Experimental material

As previously mentioned, the experimental material for this
evaluation included a participant consent letter, two video
tutorials (one on the standard i* concrete syntax and another on
the new i* concrete syntax), two versions of the i* SR model
for each of the two tasks (understanding and reviewing), a
NASA-TLX questionnaire, and a demographic questionnaire.
To contrast the two alternative concrete syntaxes for i*, we
prepared two versions of each i* SR model, one with the
standard i* notation and the other with the new i* concrete
syntax. The two versions of the model used for the understand-
ing tasks are presented in Figs. 3a and 3b. The two versions
of the model for reviewing tasks are presented in Figs. 3c
and 3d. We were very conservative concerning readability. All
the elements presented to participants, including textual labels,
were comfortably readable in the 22 inch monitor used for
conducting this experiment, so that readability would not be an
issue. All figures share a common structure, with three Areas
Of Interest (AOI): a question on top, a language key with the
elements used in the model on the left side, and a main area
with the model. For each task, we used a similar layout with
both concrete syntaxes so that the only difference among them
is the usage of a particular concrete syntax. For each task we
annotated two sets of AOIs to analyse eye-tracking data. An

AOI is classified as relevant, if it contains an element that
belongs to the answer of the task, or irrelevant, otherwise.
No textual descriptions of the scenarios under analysis were
offered to the participants, so they had to answer our questions
based only on the visual models.

Previous studies on i* showed that its concrete syntax is
semantically opaque, and that the alternative symbols used in
this paper were easier to identify [11]. The assumption was
that these symbols would improve the understandability of the
model by non-experts. However, those stakeholders are likely
to examine i* models in a document or within an i* editor. In
both cases, it is common to have a language key available: it is
considered good practice to add a language key in a document,
and the editor’s toolbar will also serve as a language key, in
practice. As such, the presence of a language key is aligned
to common practice.

All the materials used in this evaluation, can be found in
the paper’s companion site3.

D. Participants

This evaluation was performed by 57 participants selected
by convenience sampling. Most of them are students at dif-
ferent levels at our University. The main research question of
this paper is whether improving the i* concrete syntax has a
real impact on its understandability by stakeholders other than
Requirements Engineers. The latter may be specially trained
to use this concrete syntax. Our target population is therefore
non-experts, making our subjects better surrogates for this type
of stakeholders than experienced RE practitioners. Students
are often used as surrogates for practitioners in software
engineering experiments [18, 19] and have shown to be a valid
option in those experiments [20, 21].

Of the total of participants, 27 were tested with the standard
i* concrete syntax, while the remaining 30 used the new
concrete syntax. No participant was tested for both versions
of the language, as a learning effect from one evaluation to
the next could represent a confounding effect. Our goal was
to have participants with a similar background testing both
versions of the language. None of the participants who used
the new concrete syntax participated in the evaluation of the
standard concrete syntax, and vice-versa.

For each participant, we collected demographic data on
previous experience with i*, age, highest completed level of
education, current occupation (student, researcher, or prac-
titioner), field of studies, gender, nationality, and usage of
reading devices (glasses, or contact lenses).

Regarding previous experience with i*, in the group as-
signed to the standard concrete syntax, there was 1 participant
who had used i* in a professional context, 5 who learnt it in
the context of a course, and the remaining 21 had no previous
contact with i*. For the new concrete syntax, 3 had learnt i*
in the context of a course and 27 did not know it.

Concerning participants age distribution, the assumption of
normality is not reasonable as shown by a Shapiro-Wilk test

3https://sites.google.com/view/istarconcsyntaxexperiment/home
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(a) Comprehension task with the standard i* concrete syntax (b) Comprehension task with the new i* concrete syntax

(c) Review task with the standard i* concrete syntax (d) Review task with the new i* concrete syntax

Fig. 3: Understand and review tasks proposed to participants

conducted on each of the participants groups (p < 0.001,
in both cases), and confirmed by the visual inspection of
boxplots, Q-Q plots and kernel density plots, omitted here for
the sake of brevity. We then used the Welch t-test to test if
there was a statistically significant difference between the age
distribution in the two groups. The Welch t-test is robust when
the group variances are unequal, and even if the sample sizes
are unequal, as well as to departures from normality in the
data. There was no statistically significant difference between
the ages of participants using the standard i* concrete syntax
(M = 26.38, SD = 5.933) and those using the new concrete
syntax (M = 24.63, SD = 6.451; t(1) = 53.792, p = .295).

With respect to the highest completed level of education, all
participants had some university level training. For those tested
with the standard concrete syntax, 5 completed high school,
13 had BSc degrees, 8 had an MSc degree and 1 a PhD degree.
For those participating in the new concrete syntax evaluation,
7 completed high school, 18 had a BSc degree, 4 an MSc
degree, and 1 a PhD degree. Concerning current occupation,
the standard concrete syntax had 1 researcher, 3 practitioners,
and the remainder were students; the new concrete syntax, had
1 researcher, 1 practitioner and the remainder were students.

Regarding nationality, 21 Portuguese, 4 Brazilians, 1 Croa-
tian and 1 Spaniard used the standard concrete syntax, and 29
Portuguese and 1 Brazilian used the new concrete syntax.

Concerning the field of studies, for the standard concrete
syntax, 25 were computer scientists, and 2 were industrial
engineering. For the new concrete syntax, we had 22 computer
scientists, 2 industrial engineers, 2 architects, 1 mechanical
engineer, 1 manager, 1 civil engineer and 1 lawyer. For

each concrete syntax, there were 4 female participants. The
remainder were male. In terms of the usage of reading devices,
3 participants using the standard concrete syntax and 1 using
the new concrete syntax had contact lenses while, in each
group 4 and 8, respectively, wore glasses.

E. Hypotheses, parameters and variables

For each of the two high level goals, we define the null
(H0) and alternative hypotheses (H1).

H0Understand: Changing from a semantically opaque con-
crete syntax (standard i*) to a more semantically transparent one
(new i*) does not influence i* SR models understandability.

H1Understand: Changing from a semantically opaque con-
crete syntax (standard i*) to a more semantically transparent
one (new i*) influences i* SR models understandability.

This hypothesis is further refined to cope with accuracy,
speed and effort. For example:

H0UnderstandAcc: Changing from a semantically opaque
concrete syntax (standard i*) to a more semantically transparent
one (new i*) does not influence i* SR models understanding
accuracy.

H1UnderstandAcc: Changing from a semantically opaque
concrete syntax (standard i*) to a more semantically transparent
one (new i*) influences i* SR models understanding accuracy.

And similarly for speed and ease of understanding. We
follow the same approach and refine the null and the alter-



native hypotheses in the case of review into 3 sub-hypotheses,
corresponding to accuracy, speed and effort. The independent
variable is the concrete syntax, which may be standard, or new.
The dependent variables are the same for both hypotheses, as
well as their corresponding refined sub-hypotheses.

Assessing accuracy. The accuracy achieved by our par-
ticipants is assessed by their responses with respect to their
precision, and recall, using the following metrics:

• precision – the fraction of model elements retrieved by
participants (for the first hypothesis) or of defects (for the
second hypothesis) which are relevant.

• recall – the fraction of relevant model elements (or of
relevant defects) retrieved by participants, over the total
number of model elements (or potential defects) retrieved.

• F-measure – a measure that combines precision and
recall, computed as 2∗(Precision∗Recall)

(Precision+Recall) ; this measure
provides an harmonic mean of precision and recall.

Higher values of Precision, Recall, and the F-measure,
support the claim of a better accuracy.

Assessing speed. The speed achieved by our participants is
assessed by several time-related indicators. We are interested
not only in the overall response time, but also on the time
it takes participants to provide valid answers. We will assess
speed using the following metrics:

• Duration – the time taken by the participants to complete
the task.

• FirstDet – First Detection; the time taken to accurately
report the first response element; for the understanding
task, this is the time for correctly reporting the first
element that answers the question enunciated in the task;
for the reviewing task, this is the time taken to report the
first seeded defect in the model. If a participant does not
correctly report at least one element, this metric will be
treated as a missing value and removed from all further
analysis procedures.

• LastDet – Last Detection; the time taken to accurately
report the last response element; this is the dual for the
FirstDet metric.

Lower values of these metrics support the claims of supe-
riority of the corresponding concrete syntax with respect to
its cognitive effectiveness in terms of improving the speed
with which the models are understood and reviewed. While
the overall duration addresses the time spent in the task, the
other two metrics provide a detailed picture of the moment
when the participant starts and ends providing valid feedback.

Assessing ease. The ease with which participants conduct
their tasks is assessed by effort measures. Although time
measures (as those we used for speed) are often used as proxies
for effort, in the context of the “Physics” of Notations these
are better matches for the speed component, which is likely to
strongly correlate to ease. Instead, we focus our assessment in
two information sources: the physical (visual) effort involved
in exploring the model and the perception of effort reported
by participants. The former is addressed with eye-tracking

measurements, while the latter is assessed through a NASA-
TLX questionnaire. We will consider the following metrics:

• FixRel – Fixation Rate on Relevant elements; the fraction
of number of fixations in an given AOI over the total
number of fixations in the AOG (Area of Glance). A
fixation is a stabilisation of the eye on a part of the
stimulus for a period of time between 200 and 300 ms.

• FixIrrel – Fixation Rate on Irrelevant elements; the frac-
tion of number of fixations in an given AOI over the total
number of fixations in the AOG.

• AvDurFixRel – Average Duration of Relevant Fixation;
the fraction of total duration of fixations for relevant AOIs
over the number of elements of the relevant AOIs.

• AvDurFixIrrel – Average Duration of Irrelevant Fixation;
the fraction of total duration of fixations for irrelevant
AOIs over the number of elements of the irrelevant AOIs.

• TotSac – total number of saccades while performing the
task. A saccade is a sudden and quick eye-movement
lasting between 40 to 50 ms.

• Sac2Key – number of saccades to the key AOI.
• NASA-TLX score – overall weighted score resulting from

the application of the TLX questionnaire, covering per-
ceived mental, physical and temporal demand, perfor-
mance, effort and frustration for performing a task.

A higher number and duration of fixations is associated
with a higher visual attention in a given set of AOIs (in
this case, relevant vs. irrelevant model elements) [22–24]. For
understating tasks, a higher Fixation Rate indicates higher
efficiency associated with less effort to find the relevant AOIs
[24–28]. As for reviewing tasks, a higher ratio indicates more
visual effort to find defects [26, 29]. Regarding the Average
Fixation Duration, a higher value indicates more time and
attention devoted to AOIs [23, 25, 30], some state this ratio is
correlated with cognitive processes [31, 32]. A higher number
of saccades can be associated with a higher visual effort,
meaning the participant may be somewhat “lost” in the model,
making a more erratic model navigation [23, 28, 32, 33]. A
higher number of saccades to the key can also be associated
with difficulties with the concrete syntax. Concerning the
NASA-TLX score, higher scores are associated with a higher
perceived effort by the participants [17, 33]. Both for the eye-
tracking and the NASA-TLX metrics, lower complexity will
correspond to higher ease in performing the tasks.

F. Design

Data collection was performed in two different moments,
one for each concrete syntax. Due to participants availability
constraints, most of those using the standard i* concrete syntax
performed only either the understanding or the review task.
Three of them performed both. As for the participants using
the new i* concrete syntax, they all performed both tasks.
To reduce learning effects, for those performing 2 tasks, the
relative order of those tasks changed from one participant to
the next. Each participant worked only with one of the concrete
syntaxes for i*. We balanced the number of times each task
was performed before, or after the other task.



The sequence experienced by each participant is illustrated
in Table I, where each line represents a set of participants
that followed a particular sequence of activities. T# refers to
the task number and Back to the background questionnaire
(demographic data). The tasks are encoded: concerning the
first character, U stands for understand, while R stands for
review; the second character represents the particular concrete
syntax used by that participant, where S stands for Standard
i* concrete syntax and N stands for New i* concrete syntax.
There was no pre-defined sequence for ordering participants.

TABLE I: Experimental design

#Participants Letter Tutorial T1 TLX T2 TLX Back

13 X X US X X
11 X X RS X X
2 X X US X RS X X
1 X X RS X US X X

15 X X UN X RN X X
15 X X RN X UN X X

The statistical analysis performed (Welch t-test) is robust
concerning the different sample sizes, that is, a different
number of participants performing each sequence.

G. Procedure

We prepared the lab setting so that all participants could
have similar conditions. There was only one participant in
each evaluation session. We informed him that the tasks
consisted in watching a short tutorial on a requirements
language, analysing requirements expressed in that language,
and answering questions about those requirements. We further
informed the participants that we would be recording their
voice, the contents of the screen, and tracking their eyes
movements while they were analysing the requirements and
(orally) answering questions about them. Finally, we explained
they could quit at any moment, if they so desired. They then
read the Participant consent letter and gave their free and
informed consent to participate in the study.

We helped the participant sit comfortably so that his eyes
would be around 50 cm away from the screen. The eye-tracker
was placed below the screen, without blocking it. We adjusted
the eye-tracker’s angle to cope with physical differences
among the participants (the eye-tracker must point towards
the subject’s eyes, so the participant’s height determines the
ideal eye-tracker angle). The participant put on the headphones
(equipped with a microphone), and the session started.

We asked each participant to watch a video tutorial of 7
minutes and 15 seconds, explaining the elements of an i*
model. The tutorial includes the construction of a correct
model, similar to those used in the experiment, and an audio
description of both the modelling elements, as they are being
introduced, and their role in the model under construction. The
modelling elements were described using the exact phrases and
explanations present in the i* wiki. At the end of this tutorial,
we calibrated the eye-tracker, and started the evaluation ses-
sion. Each participant was asked to perform a sequence of two

tasks. Each task consisted in either understanding or reviewing
an i* model, and then answering the NASA-TLX questionnaire
concerning the effort on that task. This was repeated for each
task. The task (and corresponding model) sequence varied
from one participant to the next (discussed in Section III-F).
Finally, each participant answered a short questionnaire about
demographic information. For each session, we recorded a
video with the contents of the screen, synchronised with the
voice of the subject during the whole session. We also recorded
the NASA-TLX sets of answers, one for each task, and the
answers to the demographic questionnaire.

H. Analysis procedure

We collected descriptive statistics on our variables, namely
the mean, standard deviation, skewness and kurtosis, to get an
overview of their distribution. This was complemented with
kernel density plots to help with the visual analysis of those
distributions. Kernel density plots provide a more detailed
picture of a distribution, when compared to boxplots, and are a
better fit for comparing distributions in Software Engineering
experimentation. This visual analysis was then complemented
with Welch t-tests, which provide an alternative to the t-test,
as they can robustly handle non-normal distributions, with
different sample sizes and variances. Section V shows that
the vast majority share these properties. A detailed discussion
on the benefits of using kernel density plots vs. box plots,
and using Welch t-test for comparing distributions in a robust
way (as opposed to two samples t-test, or a non-parametric
alternative to it, such as the Mann-Whitney U test) is in [34].

IV. EXECUTION

A. Preparation

The data collection was carried out with a laptop connected
to an external 22 inch, wide screen, full HD monitor, an
EyeTribe eye-tracker4, a set of headphones with a microphone,
and an external mouse and keyboard. The experimenter con-
trolled the session on the laptop, while the participant used
the eye-tracker, headphones and microphone to perform the
models’ analysis, viewing the tasks in the external monitor.
Each participant started by reading a consent information
letter, then watched the video tutorial on the i* framework.
That was the only source of information on i* the participant
would have for the duration of the experiment, other than an
i* language key (see Fig. 3d).

Finally, we recorded the audio and video of the whole
section, so that the answers were collected with a think aloud
approach. We proceeded with the calibration of the eye-tracker,
which consists of having the participant following with her
gaze a target as it moves and fixates in predetermined screen
coordinates. We used the EyeTribe calibration application,
only accepting good or excellent calibrations (top levels of a
5 points ordinal scale) to proceed to the actual data collection.

4http://www.theeyetribe.com/
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B. Deviations

During the standard i* concrete syntax experiment, we
observed a technical problem with the software for audio
capturing, leading to the exclusion of a total of 6 cases (4
Rev. + 2 Und.). This can be perceived in Table II, on sector
for accuracy metrics where the number of participants is 12
for both tasks (instead of 14 and 16). Another situation in
this same experiment, where we could not determine when the
participant started viewing each of the models led to the partial
exclusion of 1 case (Und.). In addition, a technical problem
with the eye-tracker device led to the exclusion of 2 cases
for the understanding task, one for each concrete syntax. This
can be observed in Table II on the sectors for speed and visual
effort metrics, where the total number for the understanding
task is 10 and 29 instead of 12 and 30, respectively.

V. ANALYSIS

A. Descriptive statistics

Table II presents the descriptive statistics for the metrics
collected in our data analysis, (introduced in section III-E). For
each metric we present 4 lines in the table. The first 2 refer to
the understanding task, while the other 2 refer to the reviewing
task. In the Syntax column we specify which of the syntaxes
we are considering (Stand. represents the standard i* concrete
syntax, while New represents the new concrete syntax. We
further present the mean, standard deviation, skewness, kurto-
sis, and the p-value for the Shapiro-Wilk normality test. The
number of participants is not always the same for all metrics
(as per section IV-B), and missing values were excluded from
the analysis due to anomalies in the data collection process
(e.g., a situation when no valid elements were detected, it
made no sense to compute the corresponding metric; this is
particularly noticeable in the review task).

The metrics are visually grouped to reflect the three com-
ponents of cognitive effectiveness: accuracy, speed and ease.
One of the most noteworthy features of our data set is that
the shape of the distributions concerning variables related to
accuracy and speed suggests that, in general, normality is not a
reasonable assumption (p-value < 0.05). Several of the metrics
concerning ease do have a distribution suggesting normality is
a reasonable assumption (p-value ≥ 0.05). The variance of the
distributions is not similar, for several of these variables. The
visual inspection of boxplot diagrams, Q-Q plots and kernel
density plots (ommitted here for the sake of brevity) further
reinforced our assessment concerning data normality.

B. Data set preparation

In each session, we recorded without pausing the video and
audio. The NASA-TLX questionnaire was answered directly
online. During the data collection process, we took special
care not to disturb, or distract, our participants. We manually
collected the times when the participant started and ended
the visualisation of a given model. Since the answers were
given orally, a preparation of that data was also necessary. For
the understanding tasks, we had a table with all the elements
present in the model, one per column. When listening to the

TABLE II: Descriptive statistics

Task Syntax # Mean S.D. Skew Kurt S-W

Pr
ec

. Und. Stand. 12 .653 .325 -.638 -.115 .146
New 30 .525 .291 .158 -1.075 .048

Rev. Stand. 12 .089 .215 2.363 4.881 .000
New 30 .131 .271 2.135 3.955 .000

R
ec

al
l Und. Stand. 12 .722 .446 -1.181 -.584 .000

New 30 .678 .309 -.347 -1.172 .000

Rev. Stand. 12 .048 .111 2.055 2.640 .000
New 30 .067 .190 4.390 21.296 .000

F-
M

ea
s. Und. Stand. 12 .615 .415 -.713 -1.241 .011

New 30 .573 .280 -.175 -1.216 .026

Rev. Stand. 12 .061 .143 2.100 2.974 .000
New 30 .079 .189 3.515 14.577 .000

D
ur

at
io

n Und. Stand. 10 131.9 90.0 2.291 5.850 .001
New 29 163.8 111.1 1.572 2.698 .001

Rev. Stand. 12 255.3 179.4 1.755 3.815 .014
New 30 263.9 143.9 .734 -.177 .059

Fi
rs

tD
et Und. Stand. 10 120.2 103.0 2.138 5.340 .007

New 28 106.1 75.9 2.015 4.969 .000

Rev. Stand. 2 174.5 137.9 - - -
New 7 192.0 234.0 2.327 5.633 .002

L
as

tD
et Und. Stand. 10 126.3 104.2 2.037 4.941 .013

New 28 113.6 78.8 1.906 4.385 .000

Rev. Stand. 2 217.0 89.1 - - -
New 7 204.6 227.0 2.373 5.860 .001

R
el

Fi
x Und. Stand. 10 .127 .158 .701 -1.614 .004

New 29 .135 .095 1.081 .470 .005

Rev. Stand. 12 .086 .049 .257 .073 .984
New 30 .026 .031 1.741 3.205 .001

Ir
re

lF
ix Und. Stand. 10 .293 .201 .212 -1.305 .373

New 29 .264 .259 .114 .-.898 .559

Rev. Stand. 12 .282 .100 -1.019 1.344 .376
New 30 .370 .112 -.232 -.337 .573

A
vR

el
D

ur Und. Stand. 10 174.0 213.2 .671 -1.464 .008
New 29 327.7 153.7 .322 -.392 .832

Rev. Stand. 11 323.2 134.0 .800 .056 .184
New 22 274.7 205.2 1.775 4.478 .003

A
vI

rr
el

D
ur Und. Stand. 10 305.1 98.0 .476 -.432 .724

New 29 289.2 114.6 .385 -.732 .412

Rev. Stand. 12 238.0 57.3 .127 -1.976 .039
New 30 292.7 103.4 1.795 5.056 .001

To
tS

ac Und. Stand. 10 47.7 12.6 .139 -1.795 .035
New 29 41.7 21.5 .266 -.587 .459

Rev. Stand. 12 460.0 324.9 1.653 3.314 .027
New 30 458.8 256.5 .568 -.557 .128

Sa
c2

K
ey Und. Stand. 10 165.4 28.7 -.959 .057 .174

New 29 117.6 55.8 -.910 -.006 .008

Rev. Stand. 12 83.75 51.9 -.142 -.753 .795
New 30 141.3 52.0 -1.587 2.724 .000

T
L

X Und. Stand. 16 47.7 12.6 .139 -1.795 .035
New 29 41.7 21.5 .266 -.587 .459

Rev. Stand. 13 54.7 22.4 .027 -1.451 .469
New 30 58.7 20.1 -.256 -.395 .895

answers, elements that a participant described as being the
correct ones were marked with 1, in a row dedicated to each
participant. For the reviewing tasks, the procedure was the
same, but when the answer was different from the expected, we
added a column with that answer, if it was not already present.
At the end, the table contained all the answers given by the
participants, and their frequency. Concerning the eye-tracking
data, the main areas of the stimulus and its elements were
mapped into pixel coordinates to determine which regions and
elements the participants were looking at. This allowed tagging
the eye-tracking data with the elements being gazed at any
given moment, which was a necessary step for computing the
eye-tracking metrics used in this paper.



C. Hypotheses testing
For testing our hypotheses, we used the Welch t-test, instead

of the t test, as it is robust to deviations from the normal distri-
bution, different sample sizes and variance in the samples, thus
following the recommendations on data analysis for Software
Engineering empirical evaluations [34] (which summarises
best practices in statistical analysis on other domains).

RQ1: Does the adoption of a more semantically transparent
concrete syntax improve the accuracy, speed and ease when
performing understanding tasks on i* SR models? Table III
summarises the Welch t-test results for the Understand task.
There was a statistically significant difference (see Table II)
between the total number of saccades (TotSac) made by
participants while understanding the model represented with
the standard concrete syntax (M = 47.7, SD = 12.6) and
those using the new concrete syntax (M = 41.7, SD = 21.5;
t(1) = −3.247, p = .007). This suggests a lower visual effort
when using the new concrete syntax, in terms of saccades.
A similar conclusion can be drawn concerning the number of
saccades to the AOI where the language key to the concrete
syntax was presented, with a statistically significant difference
between the distribution with the standard concrete syntax
(M = 165.4, SD = 28.7) and the new concrete syntax
(M = 117.6, SD = 55.8; t(1) = 3.469, p = .002). Both
variables are related to the ease component. We found no
statistical evidence of differences concerning the remaining
variables. Figs. 4a and 4b illustrate the heat maps representing
the areas more frequently gazed during the understand tasks,
with the standard and new concrete syntax, respectively.

TABLE III: Welch t-test scores for the Understand task

Metric Statistic df1 df2 Sig.

Precision 1.186 1 18.472 .251
Recall .316 1 15.428 .756
F-Measure .323 1 15.179 .751

Duration -.907 1 19.254 .376
FirstDet .397 1 12.669 .698
LastDet .352 1 12.880 .730

FixRel -.149 1 11.299 .884
FixIrrel .437 1 11.155 .670
AvRelDur .259 1 5.302 .806
AvIrrelDur .422 1 18.198 .678
TotSac -3.247 1 12.089 .007
Sac2Key 3.469 1 30.938 .002
NASA TLX 1.399 1 42.780 .243

RQ2: Does the adoption of a more semantically transpar-
ent concrete syntax improve the accuracy, speed and ease
when performing reviewing tasks on i* SR models? Table
IV summarises the Welch t-test results for the Review task.
Again, there was a statistically significant difference in several
variables concerning the ease component of cognitive effec-
tiveness, when contrasting the number of relevant fixations,
the number of irrelevant fixations, the average duration of
irrelevant fixations and the number of saccades to the key.
Some of the eye-tracking ease metrics suggest a lower com-
plexity (i.e., an easier experience) when using the standard
concrete syntax. Others, suggest the opposite. Specifically, the

number of relevant fixations using the standard concrete syntax
(M = .86, SD = .49) was higher than the one when using the
new concrete syntax (M = .026, SD = .031; t(1) = 3.935,
p = .001). The number of irrelevant fixations has raised from
(M = .282, SD = .100) to (M = .370, SD = .112;
t(1) = −2.507, p = .020). The average duration of fixations
to irrelevant parts of the model was lower with the standard
concrete syntax (M = 238.0, SD = 57.3) than with the new
concrete syntax (M = 292.7, SD = 103.4; t(1) = −2.178,
p = .036). Finally, the number of saccades to the language
key was lower with the standard concrete syntax (M = 83.8,
SD = 59.1) than with the new concrete syntax (M = 141.3,
SD = 52.0; t(1) = −3.244, p = .004). We found no other
statistically significant differences concerning the remaining
variables. Figs. 4c and 4d illustrate the heat maps representing
the areas more frequently gazed during the review tasks, with
the standard and new concrete syntax, respectively.

TABLE IV: Welch t-test scores for the Review task

Metric Statistic df1 df2 Sig.

Precision .000 1 16.512 .983
Recall .802 1 27.868 .378
F-Measure .152 1 20.143 .701

Duration -.148 1 16.967 .884
FirstDet -.133 1 2.985 .903
LastDet .117 1 5.181 .911

FixRel 3.935 1 14.769 .001
FixIrrel -2.507 1 22.784 .020
AvRelDur .813 1 28.519 .423
AvIrrelDur -2.178 1 35.492 .036
TotSac .011 1 16.775 .991
Sac2Key -3.244 1 20.370 .004
NASA TLX .296 1 20.851 .592

VI. DISCUSSION

A. Evaluation of results and implications

RQ1: Does the adoption of a more semantically transparent
concrete syntax improve the accuracy, speed and ease when
performing understanding tasks on i* SR models? We found
no evidence of improvements brought by the adoption of the
new i* concrete syntax, in terms of the accuracy and speed
with which our participants performed their understanding
task. The only statistically significant difference observed
when contrasting the performance of users with each of the
concrete syntaxes conveyed a greater visual effort while using
the standard notation, observable through a higher number of
saccades in general, and a higher number of saccades targeting
the language key, on the left hand side of the screen. Both
seem to convey a higher difficulty in using the standard i*
concrete syntax. That said, the level of success and overall
time taken to perform the task are similar, regardless of the
particular concrete syntax. Our interpretation is that, even if
the particular concrete syntax created some extra difficulties,
these must have not been significant. In fact, the self reported
perception of the complexity of the task, through the NASA-
TLX questionnaire, supports the interpretation that participants
evaluated difficulty similarly, in both cases.



(a) Understand task with standard i* notation (b) Understand task with the new i* notation

(c) Review task with standard i* notation (d) Review task with the proposed i* notation

Fig. 4: Heat maps for the understand and review tasks in both notations

RQ2: Does the adoption of a more semantically transparent
concrete syntax improve the accuracy, speed and ease when
performing reviewing tasks on i* SR models? As with RQ1, we
found no evidence of the benefits of the new concrete syntax,
when compared to the standard, in terms of speed, or accuracy.
Again, there were some differences in terms of visual effort.
While the effort spent looking at the relevant parts of the model
decreased, the effort on looking at irrelevant parts of the model
increased, with the new notation. Similar to what we observed
for RQ1, the feedback provided by the participants through the
NASA-TLX questionnaire suggests that, if indeed there was
an effort difference, the participants did not notice it.

B. Threats to validity

Conclusion validity. Although we have a reasonable num-
ber of participants, higher than most sample sizes reported
in other eye tracking experiments (see [23]), sample size is
a risk, as the results may not apply to larger populations.
We plan to extend this study by performing replicas, and
we facilitate independent replicas to independent teams, by
sharing the materials used in this work.

Internal validity. The potential learning effect for partic-
ipants from one task to the next was mitigated by assigning
the tasks to participants in a way that those starting with the
understanding task and those starting with the reviewing task
were balanced. In addition, participants using one concrete
syntax were not using the other one. We found no evidence
of learning effects in the data. Finally, special care was
taken to guarantee that all the materials produced were easily
readable in the 22 inch monitor used for the experiment. We
were limited by the technical specifications of the eye-tracker

device, such as limitations in the external monitor dimensions
and distance to the eye-tracker. The fonts and symbols used
had to be big enough for easy visualisation by all participants.
As such, the tested models are fragments of larger models.
Notwithstanding, presenting only model fragments to focus
the attention of the stakeholders is a common technique for
improving communication with them. Moreover, our results
show that the tasks were already challenging for our partici-
pants, with this model size. We need to resolve those technical
limitations before the replication with bigger models.

External validity. Overall, our participants had little to no
prior knowledge in i*, making them good surrogates for non-
expert stakeholders (our target population). Further research is
needed to assess how these changes in concrete syntax would
impact experienced Requirements Engineers. Also, the models
used in our evaluation are neither representative of all possible
alternative concrete syntaxes nor of all i* SR models.

Construct validity. Since we have showed a video tutorial
about i*, and afterwards participants answered questions about
i* models, they might have felt that they were being evaluated.
This may have caused an evaluation apprehension threat,
where participants try to look better, which is confounded to
the outcome of the experiment. To mitigate this threat, we have
not informed the participants about what was being tested, i.e.,
their accuracy, speed and ease in the performed tasks.

C. Inferences

Inferences are discussed contrasting the results of the stan-
dard concrete syntax with the new i* concrete syntax.

Similar speed and accuracy. Our results suggest that for
i* models of the complexity used in this evaluation there was



no observable benefit in the speed and accuracy with which
the participants were able to conduct their tasks. Two possible
explanations for cancelling the effect of using symbols with
a greater semantic transparency are: (1) the presence of a
language key that facilitates the interpretation of the symbols
in such a way that the higher semantic transparency of the new
concrete syntax has no effect in the results, and (2) the results
were mostly influenced with the difficulties of our participants
with semantic aspects of the models rather than with syntactic
ones. Concerning ease, we did find some indicators of eye-
tracking suggesting different visual efforts. Further research is
necessary to assess how consistently these results occur with
other users, models and concrete syntaxes.

No deep overall impact of visual effort. The visual effort
is lower for the new concrete syntax, as participants seem a
bit more “lost” with the standard concrete syntax, making a
more erratic model navigation (see the more scattered heat
map footprint in Fig. 4). However, this was not perceived as
a shortcoming by the participants. They were not even aware
that they struggled more with the navigation, as suggested
by their answers to the NASA-TLX questionnaire. Thus,
although navigating in the standard concrete syntax models
was visually harder, this had no practical impact in their overall
performance. If the tasks were longer or in a higher number,
though, the results could have been different, due to fatigue.
This should be explored in subsequent studies.

Better symbol semantic transparency did not imply
better model understanding. This is somewhat in line with
the findings in [35], reporting that the application of the
PoN theory is complex, often leading to sub-optimal concrete
syntaxes proposals and evaluations. Even when the semantic
transparency of the concrete syntax significantly improves,
this does not necessarily translate into better performance
when using the models, due to the context provided by the
model, and, when available, the presence of a language key.
Furthermore, semantic transparency is just one of the 9 PoN
principles. Hence, we suggest that future studies consider
syntactic improvements based on more than a single PoN
principle. Plus, more realistic scenarios should be considered.

VII. RELATED WORK

Several studies were performed upon different modelling
languages, particularly UML, BPMN, and some goal-oriented
languages, such as i* and KAOS. These studies aim at
detecting problems concerning the languages’ concrete syntax
by using the PoN set of principles, and propose solutions to
mitigate them. Moody et al. [5] propose several improvement
recommendations for the concrete syntax of diagrams defined
in UML 2.0 while Kouhen et al. [6] evaluate UML with a set of
experiments and report on its lack of semantic transparency.
Genon et al. [7] evaluate the cognitive effectiveness of the
BPMN 2.0 concrete syntax, and Moody [8] identifies in BPMN
serious issues that may hinder its usability and effectiveness
in practice, particularly for communicating with end users.
Regarding goal-oriented approaches, Moody et al. [10] analyse
the cognitive effectiveness of i*, Caire et al. [11] propose

an approach to designing concrete syntaxes, demonstrated
with i*, that actively involves novice users in the process.
Matulevičius et al. [9] evaluate how KAOS and Objectiver, its
tool, help the modelling activity, offering recommendations for
modellers, language designers and tool developers.

Störrle [36] studies the impact of the usage of good vs. bad
diagram layouts on model comprehension tasks when using
UML, in particular use cases, class, and activity diagrams. On
a similar research line, Santos et al. [37] evaluate the effect of
the layout guidelines on the i* models understandability, by
using eye-tracking. Other studies with eye-tracking, assessed
the effort involved in the comprehension of software models
like BPMN [38], ER [30], or TROPOS [39].

Albeit their importance, several PoN studies focused on the
evaluation of individual symbols, and on the stakeholders’
ability to correctly recognise them. Yet, software engineers
use models. A significant difference from previous studies to
this paper is that we perform our evaluation at the model level,
rather than through isolated symbol recognition tasks.

VIII. CONCLUSION

We performed a quasi-experiment to compare the accuracy,
speed, and ease of the standard i* concrete syntax and an
alternative i* concrete syntax that resulted from the most
successful symbol recognition evaluations for i* [11]. A total
of 57 participants performed understanding and reviewing
tasks on i* SR models. The data collected showed that the
alternative concrete syntax had no significant impact in the
accuracy and speed with which participants conducted their
tasks. Increased semantic transparency alone did not lead to
a better performance with the new i* concrete syntax. The
presence of a language key and the context provided by the
model may have mitigated the effect of the increased semantic
transparency of the new i* symbols. For ease, we found some
indicators of eye-tracking suggesting different visual efforts.

We only addressed one of the nine PoN principles in this
study. Further studies should consider the various principles,
the interactions among these, as well as their influence on
the actual performance of practitioners in understanding and
reviewing social goal models. It would be interesting to
understand if the new concrete syntax has any drawback (e.g.,
in model construction) that hinders performance, or why the
NASA-TLX questionnaire results do not support the visual
effort clear in the heat map, or still, understand the fixation
time on relevant/irrelevant AOIs and how they differ between
the two groups of participants. Finally, it is necessary to assess
how consistently our results occur with other users, models and
concrete syntaxes. We plan to replicate the experiment in other
contexts, and apply it to bigger and more complex models.
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