
Exploring Views for Goal-Oriented
Requirements Comprehension

Lyrene Silva1, Ana Moreira2 João Araújo2, Catarina Gralha2*,
Miguel Goulão2, and Vasco Amaral2

1 Dimap/IMD, Federal University of Rio Grande do Norte, Natal, Brazil
lyrene@dimap.ufrn.br

2 NOVA LINCS, DI, FCT, Universidade NOVA de Lisboa, Portugal
{amm,joao.araujo,mgoul,vma}@fct.unl.pt, *acg.almeida@campus.fct.unl.pt

Abstract. Requirements documents and models need to be used by
many stakeholders with different technological proficiency during soft-
ware development. Each stakeholder may need to understand the entire
(or simply part of the) requirements artifacts. To empower these stake-
holders, views of the requirements should be configurable to their par-
ticular needs. This paper uses information visualization techniques to
help in this process. It proposes different views aiming at highlighting
information that is relevant for a particular stakeholder, helping him to
query requirements artifacts. We offer three kinds of visualizations cap-
turing language and domain elements, while providing a gradual model
overview: the big picture view, the syntax-based view, and the concern-
based view. We instantiate these views with i* models and introduce an
implementation prototype in the iStarLab tool.

Keywords: Requirements exploration, visualization, comprehension, views

1 Introduction

Information exploration tasks, such as zooming, obtaining details-on-demand,
filtering, extracting, relating, and overviewing [1] are basic tasks for information
analysis. They have been used in several areas, including software engineering.
For code exploration, for example, these tasks may help the maintainance soft-
ware engineer to comprehend the structure and behavior of a program through
the generation of multiple views [2]. Multiple views are also broadly employed in
requirements modeling for very specific purposes. Usually, these views do not of-
fer interactive features to allow stakeholders browsing the information according
to their needs [3–6].

Requirements artifacts are usually described textually or graphically (e.g.,
with use case scenarios, or NFR graphs). These artifacts are often too large
or too complex to be quickly understood or easily queried for information of
interest by different stakeholders, including clients, domain experts, and soft-
ware engineers. Therefore, how to navigate through requirements artifacts to
get the relevant information? In other words, how can we explore (i.e., examine



or study) requirements that have been elicited and documented (often by other
people and/or not recently) to accomplish some activity of the software devel-
opment process? This need for exploration shares some similarities with needs
from other domains, such as map exploration, where the information is hierar-
chically organized, so that zoom and filter mechanisms may be used for seamless
navigation through several information abstraction levels.

We aim at providing interactive mechanisms to allow users looking for in-
formation pieces they intend to analyze. To achieve this goal, we propose three
views focusing on exploratory tasks: big picture, syntax-based view and concern-
based view. These views are conceptually abstract, and so can be used with
various types of models. Here, we chose i*, a social goal modeling requirements
language [7], to illustrate them. As we will see later, i* models get complex very
quickly. So, it is a good target to illustrate the value of our proposal.

This paper is structured as follows. Section 2 presents an overview of software
exploration and i*. Section 3 defines the three views, illustrates them with i*,
and shows an implementation of the concern-based view. It then discusses how
to apply the views to other languages and indicates some challenges on using
multiple views for requirements exploration. Section 4 discusses related work and
Section 5 summarizes our conclusions and discusses ideas for further research.

2 Background

Requirements exploration is a process to navigate through requirements arti-
facts, aiming at comprehending their structure and content. Each stakeholder
engaged in requirements exploration has particular skills and goals, and aims
to quickly find specific information to confirm or refute his understanding of
the requirements. These skills, goals and understanding can evolve over time.
In fact, the faster stakeholders understand artifacts, the faster they may adjust
their exploration goals [8]. Similarly to program exploration [9], there are three
major reasons to provide mechanisms for requirements exploration:

– Requirements artifacts are often used by people that have not created them.
Consequently, these artifacts have unknown structure and content to them.

– Stakeholders need to search information on these artifacts, aiming at com-
pleting a software development task or at understanding a domain. Therefore
questions may vary from simple (“Who are the stakeholders?”) to complex
(“How to modularize the system?”).

– Requirements are potentially huge, typically written in natural language
in several abstraction levels, and scattered among different artifacts which
may be specified in distinct languages. Exploration mechanisms can help
navigating through the entire documentation to find the elements associated
with a specific point of interest.

To illustrate our need for exploration mechanisms, we use the i* framework.
i* is a goal-oriented requirements framework, whose objective is to analyze and



represent how actors collaborate to achieve system goals [7]. i* offers two mod-
els: the Strategic Dependency model (SD), focused on the collaboration among
actors, and the Strategic Rationale model (SR), focused on identifying how these
goals are achieved by detailing them into tasks.

Usually, modeling starts by building the SD model, showing actors, their
main goals and dependencies. After that, in the SR model, each actor is detailed
to operationalize the defined goals. Therefore, we may understand the SR model
as an expansion of the information offered by the SD model — i* defines the
boundary element to group all the elements relevant to an actor. Despite these
two levels of abstraction, i* models may still be considered complex, since its
meta-model defines many kinds of elements and relationships. Even using only
a subset of these kinds of elements, the model can easily become too large and
complex.

Some works have investigated ways to make the i* notation simpler, for ex-
ample by increasing its semantic transparency [10]. Instead, we aim at providing
visualization mechanisms that essentially use the standard notation, enriched
with information hiding mechanisms, so that a particular view supports an eas-
ier way to focus on the relevant parts of the model, for a particular stakeholder.

Fig. 1 presents an SR model for the Health Care System (HCS), modeled with
the iStarLab tool [11]. HCS provides costs management of a medical service, con-
sidering the trade-offs between Patients, Insurance Companies and Physicians
[7]. This model consists of 13 actors, 13 goals, 41 tasks, 26 softgoals, and 165
relationships. If a stakeholder needs to analyze just one of the actors and its
internal activity, the boundary element provides this information, and we could
cut out all the other external dependencies. However, if we do that, we lose the
context of those elements. On the other hand, if we do not cut them out, we
need to manage a larger than actually needed model, and struggle to follow the
intricate links. This example shows how the size and complexity of i* models
can be significant, and consequently decrease our ability to analyze them.

3 Views for Requirements Exploration

Creating multiple views is a strategy for requirements exploration. These explo-
ration views must include interaction. Zoom, filter, extract, details on demand,
history, relate, and overview are examples of exploration tasks supporting in-
teraction with the information [1]. This paper defines three views focusing on
filtering and zooming of requirements models. We have taken the classical Visual
Information Seeking Mantra, “Overview first, zoom and filter, then details-on-
demand” [1], into consideration. Thus, the focus is on our need for: top-down
and bottom-up navigation; selecting the parts to be detailed; and selecting infor-
mation types offered for the models, as well as information related to the domain
vocabulary.

Our views offer an information subset (raw or pre-processed) of a model
taken as source, and represent it by using the same (or similar) notation of the
source model. Using the representation of the original model may decrease the



Key:

Fig. 1. The HCS strategy dependency model, taken from [11]

cognitive effort required from stakeholders. However, this representation should
depend on the task that stakeholders are performing and thus other notations
may be more appropriated in some situations.

The three views defined in this paper are: the big picture view, the syntax-
based view, and the concern-based view. The big picture generates an overview
[12] for a source model (or artifact), offering the ability to expand and reduce the
details on demand; it organizes the model information on levels of importance
or by aggregation. The syntax-oriented view filters the types of language ele-
ments that will be visualized. Finally, the concern-oriented view filters concerns,
through meta-data, system lexicon (key words) or semantic similarity.

While the big picture generalizes the need of top-down and bottom-up nav-
igation through the information aggregation/disaggregation, the concern and
syntax-based views generalize the search for information according to its ab-
straction level, from instance level to meta-model level, respectively. These views
aim to reduce the scope by hiding model elements that are not of interest in a
given moment. Next we present a conceptual model of our views.



3.1 Conceptual Model

Fig. 2 presents a conceptual model relating our views, the exploration task types
and the kind of data that we have taken into consideration. The visualization
entity consists of views and interaction techniques. Views are projections of a
model taken as source. A model consists of elements (components and rela-
tionships), which are characterized by attributes. This model entity generalizes
model approaches (e.g. i*, use cases, and KAOS). For example, for i* the set
of components includes nodes such as actors, boundaries, goals, softgoals, tasks,
and beliefs, while the set of relationships includes dependencies, decomposition,
associations, and means-end links.

The interaction techniques that we have focused on this paper are zoom and
filter. Zoom realizes the big picture while filter realizes the syntax and concern-
based views. We define the big picture view to offer an overview that aggregates
elements of a model, while the concern and syntax-based views filter, respectively,
data into attributes and from the model elements.

Fig. 2. Conceptual model for exploration views

Although we have classified our views as a kind of zoom and filter, they also
include characteristics of the following types of interaction:

– extract, because they are slices of an original model, hence representing an
information subset of the original model and obeying its syntactic and se-
mantic rules;

– overview, because the aggregation proposed in the big picture may generate
a collapsed representation at a higher abstraction level;

– details on demand, because the aggregations may be gradually expanded
according to the user needs.

These views should be used in an interactive and integrative way. This means
that it is necessary to provide tools to make the views interactive so that the
stakeholder can directly manipulate, as well as combine, them in a non predefined
order.



3.2 Exploring i*

To instantiate our views for i*, we analyze i* elements, hierarchy, composition
and decomposition characteristics, and intrinsic goal. We model its components
and identify which one of them could be filtered and aggregated.

The Big Picture View. We can perceive the SD model as an abstract view
of a system, showing its context. The SD model is later refined into SR models,
each specifying an actor in the SD model. Here, the SD model can be seen as a
Big Picture for the SR models.

SD models usually show more than one dependency between any two actors.
The larger the number of links (i.e., the actor’s fan-in and fan-out), the more
unreadable the model becomes. Hence, an SD overview, or simpler view, may be
useful, allowing us to gradually expand and reduce it according to our needs. It
is worth mentioning that we want to create ways to aggregate (and disaggregate)
information into models, rather than creating new notations to represent them.
So, if the source model language does not provide aggregation elements, we must
create visual mechanisms to help the user see the collapsed points of information.

The intrinsic characteristics of SD and SR models led to us to identify four
ways to reduce their quantity of elements:

– Hiding dependencies: multiple dependencies between any two actors are col-
lapsed into one single relationship. This relationship will be annotated in
both directions, defining the quantity of dependencies collapsed into it.

– Hiding actors: actors (as well as roles, positions and agents) associated to
others by isa, is-part-of, plays, occupies or ins relationships may be omitted
since they do not have dependencies with other actors. For example, if actor1
isa actor2, then actor1 may be collapsed.

– Hiding the internal elements of an actor: the boundary element may be used
to reduce the size of the model by hiding its internal elements. This is an i*
resource that tools have already explored.

– Hiding relationships among tasks, goals, softgoals and beliefs: any two ele-
ments only linked by decomposition relationships are collapsed into the most
general element. Note that means-ends and contributions are not hidden, as
they are not hierarchical relationships.

Fig. 3 depicts the visual mechanisms our approach adds to i* models, so that
the stakeholders are made aware of available model exploration alternatives at
a given moment. The plus sign in an actor denotes the possibility of expanding
the information on that actor, while the minus sign provides the alternative
for collapsing (i.e.) that information. Finally, a simple line aggregates several
dependencies that can, if necessary, be expanded.

Fig. 4 illustrates our big picture view for Fig. 1. It is a simplification of
the original model, since it hides several visual elements. This reduction still
shows the actors and dependencies among them. Note that dependencies are
represented by an annotated relationship, whose ends indicate how many de-
pendencies exist on each direction, if any. Although it uses a different notation



Actor can be 
expanded

Actor can be 
reduced

Dependencies can 
be expanded

Fig. 3. Visual clues for
simplifying i* models vi-
sualization

+ Actor can be expanded

Dependencies can be expanded

+

+

+

+

+

+

+ +

+

+2

3

1

3

2

1

1

1

1

5

2

2

1

1

2

1

1

1

1

Fig. 4. The Big Picture with both actors and
dependencies collpased

for dependencies and actors, there are no new elements involved, hence still rep-
resenting a subset of an SD model. The number of dependencies collapsed in
each relation may be used to identify, for example, actors that accumulate too
many responsibilities, or those that have too few (their fan-in and fan-out).

Stakeholders may explore (collapse and expand) actors and relationships
(their elements of interest), by directly selecting them or by using other interac-
tion elements such as menus and check boxes. For example, Fig. 5 illustrates the
expansion of Patient actor and dependencies between Physician and Insurance
Company actors, which were collapsed in Fig. 4.

2 3 1

1

2

1

1

1

1

1

11

1

523

1

2

2

+

+

+

++

+

+

+

+

-

+
-

Actor can be expanded

Actor can be reduced

Dependencies can be expanded

Fig. 5. The Big Picture with an expanded link and actor

Syntax-based View. This view provides the possibility of choosing the syn-
tactic elements of interest. It is worth noting that hiding some combinations



of elements (subsets of the language) may generate semantically invalid models
(e.g., showing the boundary but not its related actor). Therefore, it is necessary
to define the possible combinations of elements through rules to generate well-
formed views. Another alternative is to use visual clues to contrast focused with
non-focused elements.

Fig. 6 depicts a SD model showing only the resource dependencies. This view
helps stakeholders to identify the resources flow among actors, for example, Lab
can receive a Lab fee from Claim manager and Physician. Other important
filters are related to each dependum, node or relationship kinds. For instance,
generating a view that shows only the goals (softgoals, tasks or beliefs) related
to each actor helps to understand why those actors depend on each other, or if
their goals are not directly related to their dependencies.

+ Actor can be expanded

Dependencies can be expanded

+

+
+

+
3

2

1 1

2 1

2

1

2

2

11

Fig. 6. Syntax-based view: filtering resource dependums

Concern-based View. This view allows the abstraction of the model by fil-
tering model elements. The focus is not on a type of element of the language,
but, instead, on values for these types. For instance, if stakeholders only need
to explore one specific actor through its SR model or identify which aspects
concerning response time have been addressed, the actor’s name and keywords
about response time, respectively, may be used as criteria for generating these
views. Additionally, we can use the syntax-based view in conjunction with the
concern-based view to make the filter more precise. For example, if the name of



that actor is being used for naming another kind of element, we could narrow
the search by only considering the actor element type.

This kind of visualization also represents a set of views that could be defined
by the stakeholders. Basically, they can specify values for particular types of
language elements (in this case the syntax and concern based views are used in
conjunction), or, more freely, search for a concern on any type of element. It is
also necessary to consider that the result of these searches has to include the
context (the model elements) related to the concern searched, as this is usually
relevant for the analysis. For instance, when stakeholders search for the actor
named Patient, they probably want actor Patient with all its internal elements
(those within its boundary), and the actors with dependencies to Patient.

In this case, there is a clear need to consider the distance to the elements to be
captured by this view. For example, a distance of zero only captures the elements
directly searched, a distance of one considers the elements directly searched and
those elements linked to them, a distance of two searches all elements in distance
of one and those elements linked to them, and so on and so forth. Moreover, some
kind of query language could be needed.

Fig. 7 illustrates the result for a free search, requiring the elements that
match the value Cost, with a distance of one. The result is all elements with the
string Cost and the actors, tasks, goals and softgoals directly linked to them.

+

- -

+
-

Actor can be expanded

Actor can be reduced

Dependencies can be expanded

3

1

Fig. 7. Concern-based view (considering a distance of one): Filtering the string Cost

3.3 Implementation

The i* models presented in this paper were created with our iStarLab tool, an
Eclipse-based i* editor that allows stakeholders to generate concern-based views



by selecting one or more concerns. After the selection, the tool presents a view
that shows which elements of the model are involved or contribute to achieve that
concern or set of concerns. The prototype tool was implemented using Domain
Specific Language (DSL) construction mechanisms.

The tool can be used to create i* models as well as to analyze them in
terms of concerns. In this context, a concern can be viewed, for example, as
a non-functional requirement (NFR) or a symbol of the system lexicon. Each
one of the model elements should have one or more concerns associated with it,
through tags. The stakeholder can assign one or more concerns to the elements
at any time. During or after the modeling process, s/he can choose a set of those
concerns, from a list, for further scrutiny. With this analysis, stakeholders can,
for example, perceive if there are elements that should have associated a specific
concern, which are the most used concerns, and which resources are involved or
are needed to achieve a desired concern.

In this implementation of the concern-based view, there are two types of
visualizations available: (i) highlight model elements with a specific set of con-
cerns, without losing the model context; and (ii) view only model elements with
a specific set of concerns, i.e., the others should be hidden in the model. After
analyzing a given concern, the stakeholder can view the model in its original
state, i.e., the model without highlighted elements or deleted ones.

3.4 Discussion and Challenges

Big picture, syntax and concern-base views were defined in an abstract manner.
So, they can be instantiated to other types of requirements models. To instantiate
these views, it is necessary to analyze the model principles and their syntactic
and semantic elements and structure. Also, it is necessary to analyze if the model
has aggregation elements that may be used, similarly to the boundary element
in i*. To validate this claim about the generality of these views, we successfully
applied them to use case diagrams and their scenario descriptions (the results
cannot be presented here, due to lack of space).

Taking into consideration the performed literature review and our experi-
ence with the i* and use case models, we enumerate some of the challenges on
generating or using multiple views for requirements exploration: (i) in the re-
quirements engineering process, many different models are generated; so, it is
necessary to provide exploration mechanisms to navigate through them, instead
of only navigating an isolated model; (ii) the proposed views complement each
other, so it is necessary to define, for each model, how they may be composed;
(iii) the tools implementing these views should provide mechanisms to allow
users to interact directly with the visual elements; (iv) this interaction includes
generating other views from the resulting views, and so, care must be taken to
avoid confusion between the source model and its views; (v) since users may
interact with the source model as well as with the views, it is also necessary to
generate a view about the path followed to the achieved result; (vi) interaction
mechanisms include aspects from human-computer interaction have not been
taken into consideration yet.



4 Related Work

For software comprehension, it is necessary to enhance bottom-up and top-down
comprehension approaches, facilitate the navigation, provide orientation clues,
and reduce disorientation [9]. Tools that support program comprehension should
provide requirements such as browse, search and filter mechanisms, as well as
abstractions, history and multiples views [13, 14]. Actually, software exploration
requires flexible and interactive views, i.e., visualization techniques rather than
static and isolated views, in order to enable the user navigating through artifacts
[15–18, 14].

Visualization includes data types and interaction techniques [8, 19, 1]. In this
paper, we have considered that our data types are basically software, graphs and
text, while the task types are filter and zoom. Therefore, there is a wide set of
other alternatives that may also be used for requirements comprehension.

Views generated for software comprehension serve firstly to reveal and under-
stand software structures and behavior. Consistency is secondary, as these views
are generated when needed and may be discarded soon after, to be regenerated
when necessary. This idea comes from the information visualization field, where
visualization is an activity rather than an artifact [17]. There is a high potential
for this type of visualization in requirements engineering, due to the emphasis on
information seeking and creation, with multiple parties and activities involved
[16, 17].

In this context, we may separate the related works into two categories: those
that propose views generated from data sets (that describe requirements and
their attributes), and those that propose views generated from constructs (or
properties) of a meta-model. In the first category, filters and attributes of re-
quirements are used to generate graphical views, usually graphs or charts [4, 16,
20, 6]. Although they have inspired our work, they are distinct because neither
do they deal with the properties of a modeling language nor with the generation
of visual clues in the source model (or source model subset).

In the second category (see Table 1) we list approaches that generate views
from models like i* [21, 5], theme/doc [22], use cases [23] and NFR graphs [24].
This category is highly related to our work. In general, these views are distinct
from the views defined in our research, because: (i) they deal with a specific kind
of input, while ours are abstract enough to be applied to many kinds of models;
(ii) they generate static views by using a very specific criterion, while ours use
criteria defined by users, so that many views can be generated; or (iii) they
support only one way of interacting, while in our approach, views abstract three
ways to interact with requirements models.

Horkoff and Yu [5] present two views (or filters): one to highlight the starting
points for analysis (the leaves of model), and another to indicate the elements
involved in a conflict. These views focus on seeking for elements of the meta-
meta model that match with pre-defined properties, while our views are generic
to accommodate user-defined properties.

Ernst, Yu and Mylopoulos [21] propose a visualization scheme where quality
attributes are added to elements of i* models to enable the projection of views



Table 1. Requirements aggregation and filtering mechanisms

Ref. Source Target Static/ Pre-defined criteria
Interactive

[21] i*, metadata i* interactive concern-based
[5] i* i* static syntax-based: leaves and elements

in conflict
[22] ThemeDoc ThemeDoc interactive aggregation
[25, 23] Use cases Use cases,

UML
static aggregation and concern-oriented

[24] NFR frame-
work

NFR frame-
work

static syntax-based: objective, problem,
alternative and selection patterns

Our
views

i*, use cases,
others

i*, use cases,
others

interactive aggregation, concern and syntax-
based

based on these attributes. In their work, the quality attributes of efficiency,
trustability, certainty and feasibility are defined and showed on the goal model
by using visual clues. The difference between this work and ours is that it does
not provide other filters types, neither overview.

Baniassad and Clarke [22] define a summarized view of Theme/Doc to deal
with the lack of scalability of this kind of model. This view is similar to our Big
Picture, and it was idealized to have the same kind of interaction we claim it
is needed. However, their view has not been designed to be generalized nor to
support filters.

Jacobson and Ng [25] define an approach where use case slices are elab-
orated, including pieces of the use case model and other UML models that
deal with a specific concern. We can understand this use case slice as a static
concern-oriented overview of the UML models, but it is not automatically (or
semi-automatically) generated. Furthermore, Jacobson, Spence and Bittner [23]
reinforce the importance of a Big Picture, but in this case, it is the use case
diagram (unchanged). In opposition to that, our approach considers that an in-
tegrated model exists and from it a tool should be able to generate the slices,
and these slices are user-defined, by considering three abstract criteria.

Supakkul and Chung [24] present a framework for visualization of patterns
(objective, problem, alternatives and selection patterns) in NFRs graphs. There-
fore, the criterion for visualization is specific for these patterns, so that users
cannot make free searches.

5 Conclusions and Future Work

This work presents three views for models exploration: big picture view, syntax-
based view and concern-based view. These views are based on the interaction
tasks zoom and filter. Therefore, they capture three manners of abstracting a
model, by decreasing its amount of elements, making it possible for stakeholders
to search and focus on information of interest. Although only an instantiation



of these views were shown for i* models, they are abstract enough to be applied
to other kinds of models and we have done so already for use case models.

The related works diverge from our abstract views because they are well
tailored to specific languages or concerns. Instead, our views are to be adapted
to different languages, and capture many kinds of concerns. Therefore, our pro-
posal provides a strategy to effectively deal with the complexity of requirements
models, where our views offer more flexible mechanisms for exploring and under-
standing such models. Without these kinds of mechanisms, more stakeholders’
effort is demanded to find and analyze relevant information in the system model.

For the near future, we are interested in investigating how tools can be pre-
pared for supporting our views. We are already exploring the use of DSLs to
query requirements models, and meta-data to provide richer insights. Also, we
will focus on other interaction tasks and define the variabilities that are intrin-
sic to requirements exploration, visualization and comprehension, as well as to
define a process to instantiate our views to other requirement models. We plan
to conduct experimental evaluations of the impact of introducing the proposed
mechanisms in requirements tools and on the efficiency and effectiveness of dif-
ferent stakeholders while performing requirements exploration. Approaches to
manage consistency among models such as in [26] will be also considered.

Acknowledgments

This work was funded by UFRN and NOVA LINCS research laboratory (Ref.
UID/CEC/ 04516 /2013), CNPq-PDE grant 201848/2014-7, and FCT-MCTES
research grant SFRH /BD/108492/2015.

References

1. Shneiderman, B.: The eyes have it: A task by data type taxonomy for information
visualizations. In: Symposium on Visual Languages, IEEE (1996) 336–343

2. Diehl, S.: Software Visualization: Visualizing the Structure, Behaviour, and Evo-
lution of Software. Springer Science & Business Media (2007)

3. Cooper Jr, J.R., Lee, S.W., Gandhi, R., Gotel, O.: Requirements engineering
visualization: a survey on the state-of-the-art. In: 4th International Workshop on
Requirements Engineering Visualization (REV 2009), IEEE (2009) 46–55

4. Donzelli, P., Hirschbach, D., Basili, V.: Using visualization to understand depend-
ability: A tool support for requirements analysis. In: 29th Annual IEEE/NASA
Software Engineering Workshop, IEEE (2005) 315–324

5. Horkoff, J., Yu, E.: Visualizations to Support Interactive Goal Model Analysis.
In: 5th International Workshop on Requirements Engineering Visualization (REV
2010), IEEE (2010) 1–10

6. Reddivari, S., Rad, S., Bhowmik, T., Cain, N., Niu, N.: Visual Requirements
Analytics: A Framework and Case Study. Requirements Engineering 19(3) (2014)
257–279

7. Yu, E.: Modelling Strategic Relationships for Process Reengineering. PhD thesis,
University of Toronto, Canada (1996)



8. Keim, D.: Information Visualization and Visual Data Mining. IEEE Transactions
on Visualization and Computer Graphics 8(1) (2002) 1–8

9. Storey, M.A.D., Fracchia, F.D., Müller, H.A.: Cognitive design elements to support
the construction of a mental model during software exploration. Journal of Systems
and Software 44(3) (1999) 171–185

10. Moody, D., Heymans, P., Matulevičius, R.: Visual Syntax Does Matter: Improving
the Cognitive Effectiveness of the i* Visual Notation. Requirements Engineering
15(2) (2010) 141–175

11. Gralha, C., Goulão, M., Araújo, J.: Identifying Modularity Improvement Opportu-
nities in Goal-Oriented Requirements Models. In: 26th International Conference on
Advanced Information Systems Engineering (CAiSE 2014), Springer (2014) 91–104

12. Hornbæk, K., Hertzum, M.: The Notion of Overview in Information Visualization.
International Journal of Human-Computer Studies 69(7) (2011) 509–525

13. Kienle, H.M., Müller, H., et al.: Requirements of Software Visualization Tools: A
Literature Survey. In: 4th IEEE International Workshop on Visualizing Software
for Understanding and Analysis, (VISSOFT 2007), IEEE (2007) 2–9

14. Storey, M.A.D.: Theories, methods and tools in program comprehension: Past,
present and future. In: 13th International Workshop on Program Comprehension
(IWPC 2005), IEEE (2005) 181–191

15. Favre, J.M.: A New Approach to Software Exploration: Back-packing with G SEE.
In: 6th European Conference on Software Maintenance and Reengineering, IEEE
(2002) 251–262

16. Gotel, O., Marchese, F.T., Morris, S.J.: On requirements visualization. In: 2nd
International Workshop on Requirements Engineering Visualization (REV 2007),
IEEE (2007)

17. Gotel, O., Marchese, F.T., Morris, S.J.: The Potential for Synergy Between In-
formation Visualization and Software Engineering Visualization. In: 12th Interna-
tional Conference on Information Visualisation, (IV 2008), IEEE (2008) 547–552

18. Niu, N., Mahmoud, A., Yang, X.: Faceted navigation for software exploration.
IEEE International Conference on Program Comprehension (2011) 193–196

19. Keller, P.R., Keller, M.M.: Visual Cues: Practical Data Visualization. IEEE Com-
puter Society Press, Los Alamitos, CA, USA (1994)

20. Heim, P., Lohmann, S., Lauenroth, K., Ziegler, J.: Graph-based visualization of
requirements relationships. In: 3rd International Workshop on Requirements En-
gineering Visualization, (REV 2008), IEEE (2008) 51–55

21. Ernst, N., Yu, Y., Mylopoulos, J.: Visualizing non-functional requirements. In: 1st
International Workshop on Requirements Engineering Visualization (REV 2006),
IEEE (2006)

22. Baniassad, E., Clarke, S.: Investigating the use of clues for scaling document-
level concern graphs. In: Workshop on Early Aspects (held with ECOOP 2004),
Vancouver, Canada. (2004) 1–7

23. Jacobson, I., Spence, I., Bittner, K.: Use Case 2.0: The Guide to Succeeding with
Use Cases. Ivar Jacobson International (2011) 1–55

24. Supakkul, S., Chung, L.: Visualizing non-functional requirements patterns. In: 5th
International Workshop on Requirements Engineering Visualization (REV 2010),
IEEE (2010) 25–34

25. Jacobson, I., Ng, P.W.: Aspect-Oriented Software Development with Use Cases
(Addison-Wesley Object Technology Series). Addison-Wesley Professional (2004)

26. Bork, D., Buchmann, R., Karagiannis, D. In: Preserving Multi-view Consistency in
Diagrammatic Knowledge Representation. Springer Int Pub, Cham (2015) 177–182


