
Metrics for Measuring Complexity and Completeness for Social Goal Models

Catarina Gralha, João Araújo, Miguel Goulão

NOVA-LINCS, Departamento de Informática,
Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa

Abstract

Goal-oriented Requirements Engineering approaches have become popular in the Requirements Engineering com-
munity as they provide expressive modelling languages for requirements elicitation and analysis. However, as a
common challenge, such approaches are still struggling when it comes to managing the accidental complexity of
their models. Furthermore, those models might be incomplete, resulting in insufficient information for proper under-
standing and implementation. In this paper, we provide a set of metrics, which are formally specified and have tool
support, to measure and analyse complexity and completeness of goal models, in particular social goal models (e.g.
i*). Concerning complexity, the aim is to identify refactoring opportunities to improve the modularity of those mod-
els, and consequently reduce their accidental complexity. With respect to completeness, the goal is to automatically
detect model incompleteness. We evaluate these metrics by applying them to a set of well-known system models from
industry and academia. Our results suggest refactoring opportunities in the evaluated models, and provide a timely
feedback mechanism for requirements engineers on how close they are to completing their models.

Keywords: Goal-Oriented Requirements Models, i*, software metrics, model assessment

1. Introduction

Goal-oriented Requirements Engineering (GORE)
has a great impact and importance in the Requirements
Engineering community, helping in identifying, organ-
ising, and structuring requirements, as well as in explor-
ing and evaluating alternative solutions to a problem [1].
There are two types of GORE models: models that only
capture goals and their refinements (e.g. KAOS [2]), or
models that capture the actors behind the goals and the
way they deal with them through refinement and dele-
gation (e.g. . i* [3] and GRL [4]). Earlier work (by the
authors) focused on the KAOS goal model [5]. In this
work, we motivate and propose metrics for social goal
models, such as those used in i*.

When modelling real-world systems with a GORE
approach, the models can quickly become very com-
plex. A common challenge for the GORE approaches
is to manage the complexity of their models. While
real-world problems have an unavoidable essential com-
plexity, we need to minimise, as much as possible, the

Email address: acg.almeida@campus.fct.unl.pt,
joao.araujo@fct.unl.pt, mgoul@fct.unl.pt (Catarina
Gralha, João Araújo, Miguel Goulão)

accidental complexity introduced by the way we model
those problems [6].

A possible way of minimising accidental complexity
of a model is to improve its modularity. In particular,
this can be achieved by identifying model refactoring
opportunities. In this paper, we focus on the i* frame-
work, and how we can manage the accidental complex-
ity of i* models. In order to identify refactoring op-
portunities for these models, we define a metrics suite
for assessing their complexity and the complexity of the
elements defined in them. Collecting such metrics on
several different models is a necessary step to establish
a typical usage profile of the modelling mechanisms.

In practice, this profile is built using descriptive
statistics analysis on the metrics collected from different
model elements. For example, the number of goals and
tasks for a system agent may indicate whether this agent
holds too many responsibilities in the system. This can
hint the modeller for a refactoring opportunity where
this agent should in fact be decomposed into several
sub-agents.

Another challenge for the GORE approaches is that
resulting models might be incomplete, which results in
lack of information for its proper understanding and im-
plementation. Eliciting requirements for these systems

Preprint submitted to Information Systems February 20, 2015



is typically performed in a stepwise manner. The re-
quirements engineer begins by modelling the higher-
level elements, and then decompose them into less ab-
stract elements. In this refinement process, it is useful to
have a measure of completeness and a timely feedback
mechanism, which can help requirements engineers to
realise how close they are to completing their models.
In this paper, we focus on how we can automatically
detect i* models incompleteness. We define a metrics
suite for assessing their completeness and the complete-
ness of the elements defined in them.

The objective of this paper is to provide a metrics
suite, along with corresponding tool support, targeted to
the measurement and analysis of complexity and com-
pleteness of social goal models (in this paper, i* mod-
els). The goal is the identification of refactoring op-
portunities to improve the modularity of those models,
and automatically detect social goal models incomplete-
ness. The identification of such opportunities can be
useful during the development of the system, where a
better modularisation can lead to a sounder distribu-
tion of responsibilities among the system components.
If performed in a timely fashion, this is likely to con-
tribute to relevant costs savings through the reduction
of the model’s accidental complexity. Refactoring op-
portunities identification is also an asset in the context
of preventive maintenance, as a facilitator for future re-
quirements changes. Regarding models’ completeness,
measuring the current status of a model, and its level
of completeness at a given time, can help in calculat-
ing the estimated effort required to finish the modelling
process.

Our metrics suite is integrated in an Eclipse-based
i* editor, so that metrics can be computed during the
requirements modelling process, whenever the require-
ments engineer requests them. The metrics are defined
using the Object Constraint Language (OCL) [7] upon
the i* meta-model. This makes our metrics set easily
extensible, as improving the metrics set can be done
by adding new OCL metrics definitions to the ones pre-
sented in this paper.

In [5], we proposed and validated a metrics suite for
evaluating the completeness and complexity of KAOS
goal models, formally specified (using OCL) and incor-
porated in a KAOS modelling tool. The metrics suite
was evaluated with several real-world case studies. The
work described in this paper shares a common approach
to metrics definition and tool implementation. How-
ever, the goals and structure of the KAOS approach are
significantly different from those of social goal mod-
els. While KAOS builds on concepts such as goals
and refinements, the metrics proposed in this paper are

specific to a set of modelling constructs, e.g. actors,
goals, refinements, and delegations, commonly present
in social goal models. In particular, i* has a modu-
larity mechanism – the actor’s boundaries – which is
not present in KAOS, that paves the way for a signifi-
cantly different approach to modularity, by encapsulat-
ing model elements within the actors boundaries. This
is reflected in the choice of relevant complexity metrics.
Actor’s boundaries are a key mechanism in the metrics
suite proposed in this paper. Our goal is to use these
metrics to leverage the modularity of i* models. This
paper extends our previous work in [8] by enhancing
the initial set of complexity metrics and adding a full
set of completeness metrics.

The rest of the paper is organised as follows. Section
2 describes background information on the i* frame-
work. Section 3 describes the metrics set, defined using
the Goal-Question-Metrics approach, and a concrete ex-
ample of its application to a real-world model. Section 4
reports the evaluation process, including a presentation
of the models, the results obtained by applying the met-
rics on those models, and a discussion on the results.
Section 5 discusses the related work. Section 6 draws
some conclusions and points out directions for future
work. While the paper is self-contained, additional in-
formation such as the complete i* meta-model, and the
detailed specification of auxiliary metrics can be found
in this paper’s companion site (CS) 1.

2. The i* approach

The i* [3] approach was developed for modelling
and reasoning about organisational environments and
their information systems. It focuses on the concept
of intentional actor. Actors in their organisational en-
vironment are viewed as having intentional properties
such as goals, beliefs, abilities and commitments. i*
has two main modelling components: the Strategic De-
pendency (SD) model and the Strategic Rationale (SR)
model. The SD model describes the dependency rela-
tionships among the actors in an organisational context.
In this model, an actor (called depender) depends on an-
other actor (called dependee) to achieve goals and soft-
goals, to perform tasks and to obtain resources. The SR
model provides a more detailed level of modelling than
the SD model, since it focuses on the modelling of in-
tentional elements and relationships internal to actors.
Intentional elements (goals, softgoals, tasks, resources
and beliefs) are related by means-end or decomposition

1https://sites.google.com/site/miguelgoulaofct/is2015companion

2



links. Means-end links are used to link goals (ends)
to tasks (means) in order to specify alternative ways to
achieve goals. Decomposition links are used to decom-
pose tasks. A task can be decomposed into four types
of elements: a sub-goal, a sub-task, a resource, and/or a
softgoal. Apart from these two links, there are the con-
tribution links, which can be positive or negative.

In this work we are particularly interested in assess-
ing the complexity and the completeness of i* models.
To support this, we needed a flexible platform upon
which we could define our metrics set. To the best of
our knowledge, none of the existing i* tools provide ad-
equate support for a flexible definition of such metrics
(detailed comparison of the existing i* tool support can
be found in [9, 10]). One of the important requirements
of the tool was that it should be extensible, so that new
metrics (which can potentially target different quality at-
tributes) can be easily added. To fill this gap, we imple-
mented an Eclipse-based i* editor using Epsilon [11],
EMF/GMF [12, 13] and Ecore Tools [14].

Figure 1 presents a fragment of the i* meta-model im-
plemented in our tool, showing only the concepts which
will be used in the metrics definitions proposed in this
paper. This meta-model is the basis for the tool sup-
port for the specification of i* models, and their evalu-
ation with model metrics. The root of the meta-model
is the meta-class ISTAR, which contains all the nodes
and relationships of an i* model. This top-level meta-
class serves as a basis for model analysis. The remain-
ing meta-classes can be easily mapped into some of the
concepts described earlier in this section.

3. A metrics set for i*

We propose a metrics-based analysis framework for
i* models, using the Goal-Question-Metric (GQM) ap-
proach [15].

Table 1 summarises the GQM-based proposal for a
set of metrics that will allow satisfying the goal of com-
plexity and completeness evaluation. The first column
(Question) presents questions that will allow evaluating
whether the overall goal is being achieved. The sec-
ond column (Metric) shows a set of metrics that pro-
vide quantitative information to answer the correspond-
ing question. The complexity evaluation goal is related
with the model and its elements. Question Q1 concerns
complexity, as perceived when regarding the model as
a whole. In particular, we are interested in the num-
ber of actors and in the number of elements, within a
given model. The next set of questions are targeted to
assessing the complexity of model elements, namely the
amount of responsibilities supported by an actor in the
model (Q2), and the number of decompositions of ac-
tor’s goals (Q3), softgoals (Q4) and tasks (Q5). For each
of these elements-centred questions, we define a basic
metric (e.g. NEA, for question Q2) and three additional
distribution metrics presenting the minimum, maximum
and average values for the basic metric. Questions Q6
and Q7 quantify the dependency relationships of an ac-
tor, and we are interested in the percentage of outgo-
ing (Q6) and incoming dependencies (Q7) of such ac-
tor. Lastly, Q8 allows to infer if the complexity of a
certain actor is related with its type (that is, actor, agent,
position or role).

Figure 1: Partial i* meta-model

3



Table 1: Goal-Question-Metric for i* models complexity and completeness evaluation

Goal: Complexity evaluation
Question Metric

Q1 – How complex is the model, concerning the number of actors and
elements?

NAct – Number of Actors
NElem – Number of Elements

Q2 – Does an actor have too much responsibility in the model?

NEA – Number of Elements of an Actor
MinNEA – Minimum Number of Elements of an Actor
MaxNEA – Maximum Number of Elements of an Actor
AvgNEA – Average Number of Elements of an Actor

Q3 – How complex is an actor’s goal, with respect to its decompositions?

NDG – Number of Decompositions of a Goal
MinNDG – Minimum Number of Decompositions of a Goal
MaxNDG – Maximum Number of Decompositions of a Goal
AvgNDG – Average Number of Decompositions of a Goal

Q4 – How complex is an actor’s softgoal, with respect to its decomposi-
tion?

NDS – Number of Decompositions of a Softgoal
MinNDS – Minimum Number of Decompositions of a Softgoal
MaxNDS – Maximum Number of Decompositions of a Softgoal
AvgNDS – Average Number of Decompositions of a Softgoal

Q5 – How complex is an actor’s task, with respect to its decompositions?

NDT – Number of Decompositions of a Task
MinNDT – Minimum Number of Decompositions of a Task
MaxNDT – Maximum Number of Decompositions of a Task
AvgNDT – Average Number of Decompositions of a Task

Q6 – Is an actor too dependent in the model? POD – Percentage of Outgoing Dependencies
Q7 – Does an actor have too many dependencies in the model? PID – Percentage of Incoming Dependencies

Q8 – Is there a variation in the average complexity of the different types
of actors?

NEIAct – Number of Elements Inside an Actor
NEIAg – Number of Elements Inside an Agent
NEIP – Number of Elements Inside a Position
NEIR – Number of Elements Inside a Role

Goal: Completeness evaluation
Question Metric

Q9 – How specific are the actors? PSAct – Percentage of Specific Actors
Q10 – How detailed are the goals? PGWME – Percentage of Goals With Means-end
Q11 – How detailed are the softgoals? PSWC – Percentage of Softgoals With Contributions
Q12 – How detailed is the SR model with respect to its actors? PAWEI – Percentage of Actors With Elements Inside
Q13 – How close are we to end the assignment of responsibilities to an
actor?

PAWOUEI – Percentage of Actors WithOut Unconnected
Elements Inside

Q14 – How close are we to end the assignment of links to the actors? PAWDOA – Percentage of Actors With Dependencies Or
Associations

The completeness evaluation goal is related with the
requirements that were identified in interactions with
stakeholders. The first questions are targeted to assess-
ing the detail of actors’ specification, and the detail level
of goals and softgoals. In particular, we are interested
in the percentage of actors with a specific type (Q9),
goals with means-ends (Q10) and softgoals with con-
tribution links (Q11). Question Q12 quantifies the per-
centage of actors with elements inside its boundary. Fi-
nally, the last questions allows to assess how complete
is the model and how close we are to finish the mod-
elling process. In particular, we are interested in the
assignment of responsibilities to an actor (Q13) and in
the assignment of links (namely dependencies and asso-
ciations) to and between actors (Q14).

3.1. Complexity metrics definition

In this section we present the complexity metrics out-
lined in section 3. For each question we provide a ta-

ble containing information concerning (i) the symptom
the requirements engineer should be alert to (in terms
of detecting “unusual values”, when compared to other
projects - more precisely, outlier and extreme values);
(ii) the potential problem this symptom may indicate
(note that “suspicious” metrics values do not necessar-
ily imply that there is a problem - they just suggest it
may be worth checking if there is one, thus helping in
early problem identification and mitigation); (iii) a sug-
gested action that the requirements engineer may want
to take, if after inspecting the corresponding model el-
ements (s)he decides there is an actual problem worth
fixing; (iv) an informal definition of the metrics speci-
fied to answer it; and (v) a formal definition using OCL
upon the meta-model fragment presented in figure 1.
When required, we also include pre-conditions in the
formal definition. For example, when defining metrics
to compute the average decomposition of goals, soft-
goals, or tasks, a typical pre-condition is to ensure that

4



there are goals, softgoals, or tasks, to be decomposed.
Elements without decompositions may have been mod-
elled in order to be final elements. It would not make
sense analysing the extent to which they are decom-
posed. For the sake of brevity, we omit trivial auxiliary
metrics definitions with basic counts. The full metrics
suite definition in OCL, including all auxiliary metrics,

can be found in the paper’s companion site.

Regarding question Q1 (see table 2), the values of
NAct (number of actors) and NElem (number of ele-
ments) are measures for the SD/SR model size. Size
can be used as a surrogate for overall model complex-
ity, and used to compare the complexity among different
models.

Table 2: Q1 – How complex is the model, concerning the number of actors and elements?

Symptom The size of the model is unusually lower, or higher, than in most models.
Potential problem The model may be over-simplistic, or unnecessarily complex, leading to problems in the understandability of the system.
Suggested action Consider revising the model. If necessary, add more detail, or remove accidental complexity.
Metric NAct – Number of Actors
Informal definition Total number of actors in the SD/SR model
Formal definition context ISTAR

def:NAct (): Integer = self.hasNode ->

select(n:Node | n.oclIsKindOf(Actor)) -> size()

Metric NElem – Number of Elements
Informal definition Total number of elements in the SD/SR model
Formal definition context ISTAR

def:NElem (): Integer = self.NEOAB () + self.NEIAB()

Requires NEOAB – Number of Elements Outside Actors’ Boundaries (CS)
NEIAB – Number of Elements Inside Actors’ Boundaries (CS)

Table 3: Q2 – Does an actor have too many responsibilities in the model?

Symptom The actor has an unusually high number of internal model elements.
Potential problem The actor may have too many responsibilities in the model.
Suggested action This actor may be a good candidate for further scrutiny. Consider decomposing this actor into several sub-actors and

distributing his responsibilities among them. If the system has no outliers, the assignment of responsibilities is probably
well balanced.

Metric NEA – Number of Elements of an Actor
Informal definition Number of elements inside an actor’s boundary in the SR model
Formal definition context Actor

def:NEA (): Integer = self.hasElement ->

select(e:Element | e.oclIsKindOf(Element )) -> size()

Metric MinNEA – Minimum Number of Elements of an Actor
Informal definition Minimum number of elements inside an actor’s boundary
Formal definition context ISTAR

def:MinNEA (): Integer = self.hasNode ->

select(n:Node | n.oclIsKindOf(Actor)) ->

iterate(n:Node; min:Integer = -1 |

let nea:Integer = n.oclAsType(Actor).NEA() in

if min = -1 then nea else min.min(nea) endif)

Metric MaxNEA – Maximum Number of Elements of an Actor
Informal definition Maximum number of elements inside an actor’s boundary
Formal definition context ISTAR

def:MaxNEA (): Integer = self.hasNode ->

select(n:Node | n.oclIsKindOf(Actor)) ->

iterate(n:Node; max:Integer = -1 |

let nea:Integer = n.oclAsType(Actor).NEA() in

if max = -1 then aux else max.max(nea) endif)

Metric AvgNEA – Average Number of Elements of an Actor
Informal definition Average number of elements inside an actor’s boundary
Formal definition context ISTAR:: AvgNEA ()

pre:self.NAct() > 0

context ISTAR

def:AvgNEA (): Double = self.NEA() / self.NAct()

Requires NEA – Number of Elements of an Actor
NAct – Number of Actors

5



Table 4: Q3 – How complex is an actor’s goal, with respect to its decompositions?

Symptom An actor’s goal has an unusually high number of decompositions.
Potential problem The goal may be over-decomposed.
Suggested action This goal may be a good candidate for further scrutiny. Consider abstracting out this goal, if it is over-decomposed. If

the actor has no outlier goals, their decomposition is probably well balanced.
Metric NDG – Number of Decompositions of a Goal
Informal definition Number of decompositions associated with a goal in the SR model
Formal definition context Goal

def:NDG (): Integer = self.goalMeansEnds ->

select(me:MeansEnds | me.oclIsKindOf(MeansEnds )) -> size()

Metric MinNDG – Minimum Number of Decompositions of a Goal
Informal definition Minimum number of decompositions associated with a goal
Formal definition context Actor

def:MinNDG (): Integer = self.hasElement ->

select(e:Element | e.oclIsKindOf(Goal) and

e.oclAsType(Goal).NDG() > 0) ->

iterate(e:Element; min:Integer = -1 |

let ndg:Integer = e.oclAsType(Goal).NDG() in

if min = -1 then ndg else min.min(ndg) endif)

Metric MaxNDG – Maximum Number of Decompositions of a Goal
Informal definition Maximum number of decompositions associated with a goal
Formal definition context Actor

def:MaxNDG (): Integer = self.hasElement ->

select(e:Element | e.oclIsKindOf(Goal) and

e.oclAsType(Goal).NDG() > 0) ->

iterate(e:Element; max:Integer = -1 |

let ndg:Integer = e.oclAsType(Goal).NDG() in

if max = -1 then ndg else max.max(ndg) endif)

Metric AvgNDG – Average Number of Decompositions of a Goal
Informal definition Average number of decompositions associated with a goal
Formal definition context Actor:: AvgNDG ()

pre:self.NGWDI() > 0

context Actor

def:AvgNDG (): Double = self.NDG() / self.NGWDI()

Requires NDG – Number of Decompositions of a Goal
NGWDI – Number of Goals With Decompositions Inside (CS)

Different candidate models for the same system can
be compared, using these metrics, with respect to their
overall complexity. Work on other paradigms (e.g.
Object-Oriented) has collected empirical evidence on
the positive correlation between size and complexity
[16, 17]. Over-simplistic models may be insufficiently
detailed, leading to problems in its understandability.
On the other hand, if the system is unnecessarily com-
plex, understandability problems may also occur.

Concerning question Q2 (see table 3), a high value
for NEA (number of elements of an actor) can be an
indicator that a particular actor has too much responsi-
bility in the model, being harder to manage the respon-
sibilities in an efficient manner. The minimum, maxi-
mum and average values help the requirements engineer
recognising cases where the responsibility is higher or
lower than expected. Complexity can also be used for
supporting project estimation efforts.

Questions Q3, Q4 and Q5, (see tables 4, 5 and 6, re-
spectively) provide different perspectives on the com-
plexity associated with a particular actor. The value of

NDG (number of decompositions of an actor’s goal),
presented in Q3, measures the complexity of the goal
decompositions associated with an actor. The value
of NDS (number of decompositions of an actor’s soft-
goal), presented in Q4, measures the complexity of the
softgoal decompositions associated with an actor. Fi-
nally, the value of NDT (number of decompositions of
an actor’s task), presented in Q5, measures the complex-
ity of the task decompositions associated with an actor.
The minimum, maximum and average values for NDG,
NDS and NDT help the requirements engineer identi-
fying out of the ordinary goal, softgoal, or task decom-
position complexities, respectively. Note that the min-
imum value is computed only for goals, softgoals, or
tasks, which are decomposed. As such, it excludes leaf
elements in its computation. It is important to note that
including too many design details in the model, by over-
decomposing goals, softgoals and tasks, may obfuscate
the requirements model, making it harder to understand
and evolve.

Concerning questions Q6 and Q7 (see tables 7 and 8,

6



Table 5: Q4 – How complex in an actor’s softgoal, with respect to its decompositions?

Symptom An actor’s softgoal has an unusually high number of decompositions.
Potential problem The softgoal may be over-decomposed.
Suggested action This softgoal may be a good candidate for further scrutiny. Consider abstracting out this softgoal, if it is over-

decomposed. If the actor has no outlier softgoals, their decomposition is probably well balanced.
Metric NDS – Number of Decompositions of a Softgoal
Informal definition Number of decompositions associated with a softgoal in the SR model
Formal definition context Softgoal

def:NDS (): Integer = self.softgoalContribution ->

select(cl:ContributionLink | cl.oclIsKindOf(ContributionLink )) -> size()

Metric MinNDS – Minimum Number of Decompositions of a Softgoal
Informal definition Minimum number of decompositions associated with a softgoal
Formal definition context Actor

def:MinNDS (): Integer = self.hasElement ->

select(e:Element | e.oclIsKindOf(Softgoal) and

e.oclAsType(Softgoal ).NDS() > 0) ->

iterate(e:Element; min : Integer = -1 |

let nds:Integer = e.oclAsType(Softgoal ).NDS() in

if min = -1 then nds else min.min(nds) endif)

Metric MaxNDS – Maximum Number of Decompositions of a Softgoal
Informal definition Maximum number of decompositions associated with a softgoal
Formal definition context Actor

def:MaxNDS (): Integer = self.hasElement ->

select(e:Element | e.oclIsKindOf(Softgoal) and

e.oclAsType(Softgoal ).NDS() > 0) ->

iterate(e:Element; max:Integer = -1 |

let nds:Integer = e.oclAsType(Softgoal ).NDS() in

if max = -1 then nds else max.max(nds) endif)

Metric AvgNDS – Average Number of Decompositions of a Softgoal
Informal definition Average number of decompositions associated with a softgoal
Formal definition context Actor:: AvgNDS ()

pre:self.NSWDI() > 0

context Actor

def:AvgNDS (): Double = self.NDS() / self.NSWDI()

Requires NDS – Number of Decompositions of a Softgoal
NSWDI – Number of Softgoals With Decompositions Inside (CS)

respectively), the values of POD (percentage of outgo-
ing dependencies) and PID (percentage of incoming de-
pendencies) are measures of an actor’s dependency links
in the SD/SR model. These values can be used to verify
if an actor is a source or a sink, allowing the identifi-
cation of pathological situations and actors’ archetypes
in the system. Furthermore, too many dependencies in-
crease the complexity and reduces the encapsulation and
reuse potential of the actors. Excessive dependencies
also limit the understandability and maintainability of
the system. In addition, if too many actors depend on
a particular actor, changes in this actor may have ripple
effects through the other actors, potentially reducing the
maintainability of the system.

Question Q8 (see table 9) provide information about
the complexity of generic and specific actors, that is: ac-
tors, agents, positions and roles. The value of NEIAct
(number of elements inside an actor), NEIAg (number
of elements inside an agent), NEIP (number of elements
inside a position) and NEIR (number of elements inside
a role) allows to verify if the complexity of a certain

actor is related with its type. It might be the case that
a particular type of actor is frequently over- or under-
specified, which would reflect on the typical complexity
of actors of that type. Note that excessive use of the spe-
cific actor notations might lead to more complex models
that might become harder to deal with and understand.

3.2. Completeness metrics definition
In this section we present the completeness metrics

outlined in section 3. The tables structure is similar to
the one presented in section 3.1.

Regarding question Q9 (see table 10), the value of
PSAct (percentage of specific actors) is a measure of
the actors’ specification. The usage of specialised
actor notations such as agents, roles, and positions,
when the distinction between them is easily made, can
help in gaining higher level of detailing in instantiating
the stakeholders and capturing the knowledge domain.
Lack of use of any of these specialised actor notations
might subject the model to lose some useful informa-
tion. However, excessive use of the special actor no-

7



Table 6: Q5 – How complex in an actor’s task, with respect to its decompositions?

Symptom An actor’s task has an unusually high number of decompositions.
Potential problem The task may be over-decomposed.
Suggested action This task may be a good candidate for further scrutiny. Consider abstracting out this task, if it is over-decomposed. If

the actor has no outlier tasks, their decomposition is probably well balanced.
Metric NDT – Number of Decompositions of a Task
Informal definition Number of decompositions associated with a task in the SR model
Formal definition context Task

def:NDT (): Integer = self.taskDecompositionLink ->

select(dl:DecompositionLink | dl.oclIsKindOf(DecompositionLink )) -> size()

Metric MinNDT – Minimum Number of Decompositions of a Task
Informal definition Minimum number of decompositions associated with a task
Formal definition context Actor

def:MinNDT (): Integer = self.hasElement ->

select(e:Element | e.oclIsKindOf(Task) and

e.oclAsType(Task).NDT() > 0) ->

iterate(e:Element; min:Integer = -1 |

let ndt : Integer = e.oclAsType(Task).NDT() in

if min = -1 then ndt else min.min(ndt) endif)

Metric MaxNDT – Maximum Number of Decompositions of a Task
Informal definition Maximum number of decompositions associated with a task
Formal definition context Actor

def:MaxNDT (): Integer = self.hasElement ->

select(e:Element | e.oclIsKindOf(Task) and

e.oclAsType(Task).NDT() > 0) ->

iterate(e:Element; max:Integer = -1 |

let ndt:Integer = e.oclAsType(Task).NDT() in

if max = -1 then ndt else max.max(ndt) endif)

Metric AvgNDT – Average Number of Decompositions of a Task
Informal definition Average number of decompositions associated with a task
Formal definition context Actor:: AvgNDTI ()

pre:self.NTWDI() > 0

context Actor

def:AvgNDTI (): Double = self.NDT() / self.NTWDI()

Requires NDT – Number of Decompositions of a Task
NTWDI – Number of Tasks With Decompositions Inside (CS)

Table 7: Q6 – Is an actor too dependent in the model?

Symptom An actor has an unusually high number of outgoing dependencies.
Potential problem The actor may be too dependent on other actors to achieve its goals.
Suggested action This actor may be a good candidate for further scrutiny. Consider balancing the number of outgoing and incoming

dependencies among actors. If there are no outliers, the dependencies are probably well balanced.
Metric POD – Percentage of Outgoing Dependencies
Informal definition Percentage of outgoing dependencies of an actor in the SD/SR model
Formal definition context Actor::POD()

pre: self.ND() > 0

context Actor

def:POD (): Double = self.NOD() / self.ND()

Requires NOD – Number of Outgoing Dependencies (CS)
ND – Number of Dependencies (CS)

tations might lead to much more complex models that
might become harder to deal with. Therefore, the choice
for the use of the general actor versus the specialised
actor notation could be made based on the value and
additional information that they will add to the model
[18]. Nevertheless, this metric is a useful measure that
can be used to compare the specification of actors from

different models, and assess whether there is any effect
by having a higher precision in the specification level of
the actors.

Questions Q10 and Q11 (see tables 11 and 12, re-
spectively) provide different perspectives on the com-
pleteness associated with a particular actor. The value
of PGWME (percentage of an actor’s goals with means-

8



Table 8: Q7 – Does an actor have too much dependencies in the model?

Symptom An actor has an unusually high number of incoming dependencies.
Potential problem If too many actors depend on a particular actor, changes in this actor may have ripple effects through the other actors.

This potentially reduces the maintainability of a system.
Suggested action This actor may be a good candidate for further scrutiny. Consider balancing the number of outgoing and incoming

dependencies among actors. If there are no outliers, the dependencies are probably well balanced.
Metric PID – Percentage of Incoming Dependencies
Informal definition Percentage of incoming dependencies of an actor in the SD/SR model
Formal definition context Actor::PID()

pre: self.ND() > 0

context Actor

def:PID (): Double = self.NID() / self.ND()

Requires NID – Number of Incoming Dependencies (CS)
ND – Number of Dependencies (CS)

Table 9: Q8 – Is there a significant difference in the average complexity of the different types of actors?

Symptom The actors from different types have a significantly different complexity. This is observable by statistically comparing
the distributions of complexity by actor type.

Potential problem It might be the case that a particular type of actor is frequently over- or under-specified, which would reflect on the
typical complexity of actors of that type. On the other hand there might be a good reason for making a particular actor
type more (or less) complex than the other ones.

Suggested action Consider comparing the average complexity of the different actor types with the one found in other systems. If it is
significantly different, further investigate whether this results from the essential complexity of the system, or from some
accidental factor (such as over-, or under-specification of the actors).

Metric NEIAct – Number of Elements Inside an Actor
Informal definition Number of elements inside an actor’s boundary in the SR model
Formal definition context ISTAR

def:NEIAct (): Integer = self.NEIAB() -

(self.NEIAgB () + self.NEIPB() + self.NEIRB ())

Requires NEIAB – Number of Elements Inside Actors’ Boundaries (CS)
NEIAgB – Number of Elements Inside Agents’ Boundaries (CS)
NEIPB – Number of Elements Inside Positions’ Boundaries (CS)
NEIRB – Number of Elements Inside Roles’ Boundaries (CS)

Metric NEIAg – Number of Elements Inside an Agent
Informal definition Number of elements inside an agent’s boundary in the SR model
Formal definition context Agent

def:NEIAg (): Integer = self.hasElement ->

select(e:Element | e.oclIsKindOf(Element )) -> size()

Metric NEIP – Number of Elements Inside a Position
Informal definition Number of elements inside a position’s boundary in the SR model
Formal definition context Position

def:NEIP (): Integer = self.hasElement ->

select(e:Element | e.oclIsKindOf(Element )) -> size()

Metric NEIR – Number of Elements Inside a Role
Informal definition Number of elements inside a role’s boundary in the SR model
Formal definition context Role

def:NEIR (): Integer = self.hasElement ->

select(e:Element | e.oclIsKindOf(Element )) -> size()

end link), presented in Q10, measures the completeness
of goals decompositions associated with an actor. The
value of PSWC (percentage of an actor’s softgoals with
contribution links), presented in Q11, measure the com-
pleteness of softgoals decompositions associated with
an actor. The higher the value of these metrics, the
higher the actor’s level of completeness. A low num-
ber of decomposition of goals and softgoals might sub-
ject the model to lose some useful information, since the
level of precision and detail is lower, leading to under-

standability problems on how goals and softgoals can
be achieved.

With respect to question Q12 (see table 13), the value
of PAWEI (percentage of actors with elements inside its
boundary) provide information about how detailed the
SR model is with respect to its actors. If there are actors
without elements inside, they may not offer any relevant
information. If those actors are useful to the model, it
is advisable that they are detailed, ergo, having a higher
level of completeness.

9



Table 10: Q9 – How specific are the actors?

Symptom This system uses a significantly different percentage of specific actors, when compared to other systems.
Potential problem This may be a symptom of an insufficiently detailed system specification, or, conversely, an over-specified one which

may be difficult to understand.
Suggested action Consider scrutinising the types of actors used in the model and re-considering whether an actor should, or should not be

defined using a specific type.
Metric PSAct – Percentage of Specific Actors
Informal definition Percentage of actors with a specific type (agent, position or role)
Formal definition context ISTAR::PSAct()

pre: self.NAct() > 0

context ISTAR

def:PSAct (): Double = (self.NAgents () +

self.NRoles () + self.NPos ()) / self.NAct()

Requires NAgents – Number of Agents (CS)
NRoles – Number of Roles (CS)
NPos – Number of Positions (CS)
NAct – Number of Actors

Table 11: Q10 – How detailed are the goals?

Symptom An actor’s goal has an unusually low number of decompositions.
Potential problem The goal may be under-decomposed.
Suggested action This goal may be a good candidate for further scrutiny. Consider detailing this goal, if it is under-decomposed. If the

actor has no outlier goals, their detail is probably well balanced.
Metric PGWME – Percentage of Goals With Means-end
Informal definition Percentage of goals with means-end link
Formal definition context ISTAR::PGWME()

pre: self.NGIAB () > 0

context ISTAR

def:PGWME (): Double = self.NGWD() / self.NGIAB()

Requires NGWD – Number of Goals With Decompositions (CS)
NGIAB – Number of Goals Inside Actors’ Boundaries (CS)

Table 12: Q11 – How detailed are the softgoals?

Symptom An actor’s softgoal has an unusually low number of decompositions.
Potential problem The softgoal may be under-decomposed.
Suggested action This softgoal may be a good candidate for further scrutiny. Consider detailing this softgoal, if it is under-decomposed. If

the actor has no outlier softgoals, their detail is probably well balanced.
Metric PSWC – Percentage of Softgoals With Contributions
Informal definition Percentage of softgoals with contribution links
Formal definition context ISTAR::PSWC()

pre: self.NSIAB () > 0

context ISTAR

def:PSWC (): Double = self.NSWD() / self.NSIAB ()

Requires NSWD – Number of Softgoals With Decompositions (CS)
NSIAB – Number of Softgoals Inside Actors’ Boundaries (CS)

Concerning questions Q13 and Q14 (see tables 14
and 15, respectively), the value of PAWOUEI (percent-
age of actors without unconnected elements inside its
boundary) and PAWDOA (percentage of actors with
dependency or association links) are measures of how
complete the model is and how close we are to finish the
modelling process. The higher the value of these met-
rics, the higher the level of completeness of the model
as a whole.

3.3. Example

Figure 2 shows a fragment of the Media Shop (MS)
model, whose main objective is to allow an online cus-
tomer to examine the items in the Medi@ internet cata-
logue (books, newspapers, magazines, audio CD, video-
tapes, and the like) and place orders. The figure, taken
from our tool, shows the actor Media Shop and some of
its elements, as well as the model metrics.

The tool allows to create i* models using a visual lan-

10



Table 13: Q12 – How detailed is the SR model with respect to its actors?

Symptom The SR model has an unusually low percentage of actors with elements inside its boundary.
Potential problem The actors specification may be over-simplistic.
Suggested action Those actors may be good candidates for further scrutiny. Consider adding and/or detailing elements inside their bound-

aries. If the system has no outliers, the SR model is probably defined with the typical amount of details, with respect to
the elements inside actors boundaries.

Metric PAWEI – Percentage of Actors With Elements Inside
Informal definition Percentage of actors with elements inside its boundary
Formal definition context ISTAR::PAWEI()

pre: self.NAct() > 0

context ISTAR

def:PAWEI (): Double = self.NAWEI() / self.NAct()

Requires NAWEI – Number of Actors With Elements Inside (CS)
NAct – Number of Actors

Table 14: Q13 – How close are we to end the assignment of responsibilities to an actor?

Symptom The percentage of actors with unconnected elements inside their boundaries represents the percentage of actors with an
incomplete specification.

Potential problem The system specification will not be complete, which can lead to problems in its understandability. This may hamper the
developers ability to faithfully implement the system according to the intention of the requirements engineer, because
this intention is not documented with enough detail in the requirements model.

Suggested action Consider completing the specification.
Metric PAWOUEI – Percentage of Actors WithOut Unconnected Elements Inside
Informal definition Percentage of actors without unconnected elements inside its boundary
Formal definition context ISTAR

def:PAWOUEI (): Double = 1 - self.PAWUEI ()

Requires PAWUEI – Percentage of Actors With Unconnected Elements Inside (CS)

Table 15: Q14 – How close are we to end the assignment of links to the actors?

Symptom The percentage of actors which are not connected to other elements in the system.
Potential problem The system specification will not be complete, which can lead to problems in its understandability. In particular, the

role of the actor in the system may become unclear. This may hamper the developers ability to faithfully implement the
system according to the intention of the requirements engineer, because this intention is not documented with enough
detail in the requirements model.

Suggested action Consider completing the specification by creating the necessary associations between the actor and other model elements.
Metric PAWDOA – Percentage of Actors With Dependencies Or Associations
Informal definition Percentage of actors with dependency or association links
Formal definition context ISTAR:: PAWDOA ()

pre: NAct() > 0

context ISTAR

def:PAWDOA (): Double = self.NAWDOA () / self.NAct()

Requires NAWDOA – Number of Actors With Dependencies Or Associations (CS)
NAct – Number of Actors

guage and provides metrics values for the model. These
values can be updated at any time of the construction
process. As such, they can be valuable to detect poten-
tial problems early in the process, such as a high acci-
dental complexity caused by a modelling options. They
can also be valuable to detect if a finished model could
be more detailed, and therefore have a higher lever of
completeness.

4. Evaluation

4.1. Analysed models

To evaluate the presented metrics, we used ten well-
known i* models, namely Media Shop (MS) [19],
Newspaper Office (NO) [20], Health Care (HC) [3],
Health Protection Agency (HPA) [21, 22], National
Air Traffic Services (NATS) [22], My Courses (MC)
[23], Mobile Media (MM) [24], By The Way (BTW)
[25], Meeting Scheduler (MSr) [3] and Patient Wellness
Tracking (PWT) [26]. We copied each of those models

11



Figure 2: Application of the tool and the metrics to the Media Shop model

to our tool, and then collected the corresponding met-
rics. MS, NO, HC and MSr have been extensively used
in the literature, while HPA and NATS are real-world
systems, also documented in the literature. MC and
BTW were modelled during SCORE – Student Contest
on Software Engineering [27]. They target different do-
mains and have different essential complexities. A com-
mon characteristic of these models is that they are avail-
able with full details, making them good candidates for
evaluation. We follow a analytical approach (as defined
in [28, 29]) in this evaluation, i.e., we perform a static
analysis on the structure of the selected models for static
qualities (complexity and completeness).

4.2. Results and discussion

In this section we present the main findings from our
statistics analysis of the collected metrics. The results
discussed in this section suggest a usage profile that
reflects the way the different model elements are typi-
cally used in social goal models. The statistics data files
and scripts for performing the statistics analysis out-
lined here can be found in the paper’s companion site.

Regarding complexity, and concerning model size in
particular (figure 3a and figure 3b), the NATS (National
Air Traffic Services) system has, approximately, twice
the size of the second and third largest systems (HC,
Health Caree and HPA, Health Protection Agency). The
NATS system also has the highest number of elements.
The MM (Mobile Media) system presents the lower
number of actors, but a number of elements similar
to that of HC (Health Care), HPA (Health Protection
Agency), MC (My Courses) and BTW (By The Way)

systems. In figure 3c we present a boxplot chart with
the distribution of the number of elements by the ac-
tors on their corresponding systems, where we can iden-
tify the outliers (denoted with O) and extremes (denoted
with ∗). Even though the MM system has a significant
difference between its number of elements and actors,
the system has no extreme or outlier values, which sug-
gests that the assignment of responsibilities to the actors
is well balanced. Actors e-news (from the Newspaper
Office system), Civil ATCO (Civilian Air Traffic Con-
troller, from the National Air Traffic Services system)
and MyCourses (from the My Courses system) are ex-
tremes, and the actor Travelers (from the By The Way
system) is an outlier, which suggests that they might
have too many responsibilities in the system. These ac-
tors could be interesting candidates for a decomposition
into sub-actors.

This overview on complexity is just a first impres-
sion. We need to analyse more detailed features to get
a clearer picture of the complexity level of these sys-
tems. For each of the counting metrics NDG, NDS
and NDT (number of decompositions of an actor’s goal,
softgoal and task, respectively) and for each of the per-
centage metrics POD (percentage of outgoing depen-
dencies) and PID (percentage of incoming dependen-
cies), we present a boxplot chart with their distributions
on the actors of their corresponding systems, in figures
3d–3h.

A closer inspection on the boxplot graphs for the
counting metrics (figures 3d–3f) shows that there are
two actors which present outlier, or even extreme val-
ues, in NDS and NDT. These should be our most likely

12



System
PWTMSrBTWMMMCNATSHPAHCNOMS

N
A
ct

25

20

15

10

5

0

Page 1

(a) NAct

System
PWTMSrBTWMMMCNATSHPAHCNOMS

N
El
em

200

150

100

50

0

Page 1

(b) NElem

System
PWTMSrBTWMMMCNATSHPAHCNOMS

N
EA

80

60

40

20

0

MyCourses

Civil ATCO

e-news (webmaster)

Travelers

Page 1

(c) NEA

System
PWTMSrBTWMMMCNATSHPAHCNOMS

N
D
G
_s
um

40

35

30

25

20

15

10

5

0

Page 1

(d) NDG

System
PWTMSrBTWMMMCNATSHPAHCNOMS

N
D
S_

su
m

20

15

10

5

0

Civil ATCO

Page 1

(e) NDS

System
PWTMSrBTWMMMCNATSHPAHCNOMS

N
D
T_
su
m

70

60

50

40

30

20

10

0

Travelers

Civil ATCO

Page 1

(f) NDT

System
PWTMSrBTWMMMCNATSHPAHCNOMS

PO
D

1,00

,80

,60

,40

,20

,00

Page 1

(g) POD

System
PWTMSrBTWMMMCNATSHPAHCNOMS

PI
D

1,00

,80

,60

,40

,20

,00

Page 1

(h) PID

Figure 3: Complexity metrics values for the models

13



candidates for further scrutiny. For example, the actor
Civil ATCO, from the NATS system, has an outlier value
for the softgoal decomposition (NDS) and an extreme
value for the task decomposition (NDT) metrics. Civil
ATCO is a crucial actor in that system, whose specifi-
cation is much more complex than that of most other
actors in the same system.

There are at least two possible problems that should
be checked, concerning the Civil ATCO actor’s decom-
position. A first potential problem is that this actor
may have too many responsibilities. A typical solution
would be to decompose the actor into sub-actors, using
the is-part-of relationship, where each sub-actor would
be responsible for a sub-system. This anti-pattern and
its proposed solution are similar to god classes [30] and
their refactoring, in object-oriented design. Note that,
sometimes, the extra complexity is not of an accidental
nature, but rather of an essential one. In such case, this
analysis is still useful, in the sense that it highlights an
actor in the system which has an extremely high essen-
tial complexity associated with it. This may hint project
managers to assign more resources to quality assurance
activities (e.g., inspections and testing) to artifacts re-
lated to the implementation of the requirements associ-
ated with this actor.

It may also be the case that the requirements engineer
may over-decompose these goals, softgoals, or tasks, by
following a functional decomposition strategy, leading
to a complex model. This is similar to the functional
decomposition anti-pattern [30], where the encapsula-
tion principle is neglected. Another consequence is that
the abstraction level of the model lowers: including too
many (design) details may obfuscate the requirements
model, making it harder to understand and evolve. Ab-
stracting away the unnecessary detailed decompositions
can improve the overall understandability of the require-
ments model.

A closer inspection on the boxplot graphs for the per-
centage metrics (figures 3g–3h) shows that the systems
have no extreme or outlier values. However, the varia-
tion of the outgoing and incoming dependencies is sig-
nificant between the actors of a same system. Note that
in some systems, there are actors with only outgoing
or only incoming dependencies. An actor with a high
percentage of incoming dependencies is crucial to the
system, in the sense that an expressive number of other
actors are dependent on that one to achieve their goals.

In the analysed models, there are no actors with spe-
cific types, therefore, it was not possible to verify the
variation in the average complexity of different types of
actors. Further discussion can be found later in this sec-
tion, when discussing completeness.

Regarding completeness, and the detail level of ac-
tors’ specification in particular (figure 4a), none of the
systems have an actor with a specific type. The ab-
sence of specific actors may cause the model to lose
some useful information, since the level of precision
and detail is lower. It may be the case where the re-
quirements engineer has found that the usage of specific
actors would not add value nor useful information to the
model. Nonetheless, this absence challenges the useful-
ness of the actors’ specification mechanism.

For each of the percentage metrics PGWME (percent-
age of goals with means-end links), PSWC (percent-
age of softgoals with contribution links), PAWEI (per-
centage of actors with elements inside its boundary),
PAWOUEI (percentage of actors without unconnected
elements inside its boundary) and PAWDOA (percent-
age of actors with dependency or association links), we
present a boxplot chart with their distribution among the
systems, in figures 4b–4f.

A closer inspection on the boxplot graphs for PG-
WME, PAWEI and PAWOUEI (figures 4b, 4d and 4e,
respectively) shows that none of the systems have ex-
treme or outlier values. Despite the nonexistence of
these values, it is advisable that the systems are analysed
in more detail and follow the guidelines presented next,
since the percentage values does not reach 100% in all
the systems. Regarding the percentage of goals with
means-end links (figure 4b), each one of the high level
functional goals needs to be refined through means-end
links. Concerning the percentage of actors with ele-
ments inside, and regarding the SR model, actors with-
out elements inside its boundary are not being suffi-
ciently detailed, and its presence in the model may not
be required, since they can not provide any relevant
information. With respect to the percentage of actors
without unconnected elements inside, the elements in-
side an actor’s boundary should possess at least a link of
any kind, that is, decomposition, means-end, contribu-
tion or dependency, since the presence of unconnected
elements inside an actor’s boundary is an indicator of
incompleteness. As stated before, systems where any of
these guidelines are not met, that is, whose percentage
value is not 100%, should be analysed.

There are three systems which present outlier or ex-
treme values, in PSWC and PAWDOA. These should be
our most likely candidates for further scrutiny.

The percentage of softgoals with contribution links
(figure 4c), presents an outlier value for the NO (News-
paper Office) system. One of the objectives of creat-
ing i* models is to show how softgoals can be achieved
through operationalization, or though more concrete
actions and design decisions included in the model.

14



System
PWTMSrBTWMMMCNATSHPAHCNOMS

PS
A
ct

0

Page 1

(a) PSAct

PGWME

1,00

,80

,60

,40

,20

,00

Page 1

(b) PGWME

PSWC

1,00

,80

,60

,40

,20

,00

NO

Page 1

(c) PSWC

PAWEI

1,00

,80

,60

,40

,20

,00

Page 1

(d) PAWEI

PAWOUEI

1,00

,80

,60

,40

,20

,00

Page 1

(e) PAWOUEI

PAWDOA

1,00

,80

,60

,40

,20

,00

NATS

HPA

Page 1

(f) PAWDOA

Figure 4: Completeness metrics values for the models

Therefore, its advisable that the requirements engineer
analyses how the softgoals from the NO system could be
operationalised, and add respective contribution link.

Concerning the percentage of actors with decompo-
sition or association links (figure 4f), there are two ex-
tremes values, for the NATS (National Air Traffic Ser-
vices) and HPA (Health Protection Agency) systems.
There are two possible ways to connect actors: through
dependency links and/or through association links. The
assignment of links to actors can only be considered fin-
ished if the actor has at least one dependency link or one
association link. Actors without any of these links are
considered incomplete, since it is not clear how they are
connected to the remaining actors in the system. There-
fore, it is advisable that the requirements engineer anal-
yses the NATS and HPA systems, in order to identify
unconnected actors and add the respective links.

5. Related work

Horkoff and Yu [31] evaluate seven goal satisfac-
tion analysis procedures using available tools that im-
plement those procedures. They evaluate three sample
goal models. The results help to understand the ways in
which procedural design choices affect analysis results,
and how differences in analysis results could lead to dif-
ferent recommendations over alternatives in the model.
Compared to our work, they study a different aspect of
goal modelling, i.e. goal satisfaction analysis, not com-
plexity or completeness.

Hilts and Yu [32] describe the Goal-Oriented Design
Knowledge Library (GO-DKL) framework. This frame-
work provides an approach for extracting, coding and
storing relational excerpts of design knowledge from
academic publications. This framework was designed

15



for knowledge reuse purposes. Our work could ex-
tend that framework by providing information about the
complexity and completeness of those existing models.

Ramos et al. [33] claim that early identification of
syntactical problems (e.g., large and unclear descrip-
tions, duplicated information) and the removal of their
causes can improve the quality of use case models. They
describe the AIRDoc approach, which aims to facilitate
the identification of potential problems in requirements
documents using refactoring and patterns. To evaluate
use case models, the AIRDoc process uses the GQM ap-
proach to elaborate goals and define questions to be ad-
dressed by metrics. Their target quality attributes are re-
usability and maintainability, different from ours. Their
metrics were neither formally defined nor implemented
in a tool.

Vasconcelos et al. [34] claim that GORE and MDD
can be integrated to fulfil the requirements of a software
process maturity model in order to support the appli-
cation of GORE methodologies in industry scenarios.
The proposed approach, called GO-MDD, describes a
six-stage process that integrates the i* framework into
a concrete MDD process (OO-Method), applying the
CMMi perspective. The fourth stage of this process
concerns the verification, analysis and evaluation of the
models defined in the previous stages; and uses a set of
measurements, specified with OCL rules, that evaluate
the completeness of the MDD model generation with re-
spect to the requirements specified in the i* model. The
set of metrics used in this stage is presented in [33], us-
ing GQM. Compared to ours, their approach focuses on
a different set of metrics as their goal was to support the
evaluation of i* models to generate MDD models.

Franch and Grau [35] propose a framework for defin-
ing metrics in i* models, to analyse the quality of indi-
vidual models, and to compare alternative models over
certain properties. This framework uses a catalogue
of patterns for defining metrics, and OCL to formu-
late these metrics. In a follow up work, Franch pro-
poses a generic method (iMDF) to better guide the an-
alyst throughout the metrics definition process, over i*
models [36]. The method is applied to evaluate busi-
ness process performance. In another follow up work,
Colemer and Franch propose building i* metrics for ag-
ile methodologies, using the iMDF method [37]. The
aim of this approach is to help individuals and organi-
sations improve requirements management activities by
using metrics for agile methodologies on top of i* mod-
els. Their approach is more focused on the process, and
more generic, while we focus on modularity assessment
of i* models.

Zowghi and Gervasi [38] provided a theoretical foun-

dation for the perspective of correctness (and its rela-
tionships regarding completeness and consistency) at
requirements evolution context. The aim is to introduce
more rigour into the process of requirements evolution,
where the authors describe which kind of proofs must
be carried out at each step during the evolution of the
requirements to make sure that the final system specifi-
cation satisfies the customer business goals. This work
differs from ours as their contribution is on formally
evaluating correctness when requirements evolve, while
ours is on evaluating complexity and completeness of
goal models through a set of metrics.

6. Conclusions

In this paper, we proposed a metrics suite for evalu-
ating the complexity and completeness of i* goal mod-
els. The proposal has been formally specified (using
OCL), implemented and incorporated in an Eclipse-
based modelling tool. The metrics were proposed us-
ing the GQM approach. The selected questions allow
evaluating the complexity of the model as a whole con-
cerning its size, and the complexity of an actor and its
model elements (i.e., goals, softgoals and tasks). They
also allow evaluating the completeness of the model as
a whole, and the completeness of an actor and its model
elements (i.e., goals and softgoals). The set of metrics
provide quantitative information to answer the corre-
sponding questions.

The contribution of this paper is that evaluating com-
plexity at early stages to identify modularity problems
of the models allows avoiding eventual extra costs in
during the later stages of software development and also
during software maintenance and evolution. The reali-
sation that the modularity of a requirements model can
be improved can trigger requirements refactoring oppor-
tunities, like decomposing a system’s actor using an is-
part-of relationship between sub-actors, or abstracting
over-decomposed goals, softgoals, or tasks. Complete-
ness analysis is useful to help requirements engineers to
evaluate how close they are to completing their models.
The realisation that a model is incomplete can trigger a
set of model improvements, such as decomposing goals
and tasks or adding elements to an empty actor bound-
ary, increasing its detail level and easing its implemen-
tation, in the case of a software system actor. These
metrics were validated by applying them to well-known
industrial and academic models.

For future work, we intend to replicate this evalu-
ation with other i* models and extend the metrics set
to cover other model quality attributes, such as correct-
ness. The final aim is to provide a metrics-based mod-

16



elling support in GORE tools. In particular, with an in-
creased number of evaluated models, we will be able to,
for example, identify thresholds for suggesting merg-
ing and/or decomposing model elements to reduce com-
plexity of an i* model. As a cross-validation for those
thresholds, we plan to conduct an experiment with re-
quirements engineers to assess the extent to which those
thresholds are correlated with an increased difficulty in
i* model comprehension. We also plan to define and
apply refactoring patterns for GORE models.

Acknowledgements. The authors would like to thank
FCT/UNL and CITI – PEst-OE/EEI/UI0527/2011, for
financial support to this work.

References
[1] A. van Lamsweerde, Goal-oriented requirements engineering:

A guided tour, in: 5th IEEE International Symposium on Re-
quirements Engineering, IEEE Computer Society, 2001, pp.
249–262.

[2] A. van Lamsweerde, Requirements Engineering, 1st Edition,
John Wiley & Sons, Inc., 2009.

[3] E. Yu, Modelling strategic relationships for process reengineer-
ing, Ph.D. thesis, Canada (1995).

[4] ITU-T: Recommendation Z.151 (10/12), User requirements no-
tation (URN)–language definition (2012).

[5] P. Espada, M. Goulão, J. Araújo, A framework to evaluate com-
plexity and completeness of kaos goal model, in: 25th Interna-
tional Conference on Advanced Information Systems Engineer-
ing, CAiSE ’13, Springer-Verlag, 2013, pp. 562–577.

[6] F. P. Brooks, The Mythical Man-Month: Essays on Software En-
gineering, Addison-Wesley Publishing Company, Reading, MA,
USA, 1995.

[7] ISO/IEC JTC1, OMG, Information technology – object man-
agement group object constraint language (OCL) (2012).

[8] C. Gralha, M. Goulão, J. Araújo, Identifying modularity im-
provement opportunities in goal-oriented requirements models,
in: Advanced Information Systems Engineering, Springer Inter-
national Publishing, 2014, pp. 91–104.

[9] C. Almeida, M. Goulão, J. Araújo, A systematic comparison of
i* modelling tools based on syntactic and well-formedness rules,
in: J. Castro, J. Horkoff, N. Maiden, E. Yu (Eds.), 6th Interna-
tional i* Workshop (iStar 2013), Vol. 978 of CEUR Workshop
Proceedings, 2013, pp. 43–48.

[10] i* wiki, Comparing the i* tools (Last access: February 2015).
URL http://istar.rwth-aachen.de/tiki-index.php?

page=Comparing+the+i%2A+Tools

[11] D. Kolovos, L. Rose, A. Garcı́a-Domı́nguez, R. Paige, The Ep-
silon Book, Eclipse Foundation, 2013.

[12] D. Steinberg, F. Budinsky, M. Paternostro, E. Merks, EMF:
Eclipse Modeling Framework, Addison-Wesley Professional,
2009.

[13] Eclipse, Eclipse graphical modeling framework (gmf) tooling
(Last access: February 2015).
URL http://eclipse.org/gmf-tooling/

[14] Eclipse, Ecore tools (Last access: February 2015).
URL http://wiki.eclipse.org/index.php/Ecore_

Tools

[15] V. R. Basili, G. Caldiera, H. D. Rombach, The Goal Question
Metric Paradigm, Encyclopedia of Software Engineering, 1st
Edition, Vol. 2, John Wiley & Sons, Inc., 1994.

[16] K. El Emam, S. Benlarbi, N. Goel, S. N. Rai, The confounding
effect of class size on the validity of object-oriented metrics,
Software Engineering, IEEE Transactions on 27 (7) (2001) 630–
650.

[17] R. Subramanyam, M. S. Krishnan, Empirical analysis of ck
metrics for object-oriented design complexity: Implications for
software defects, Software Engineering, IEEE Transactions on
29 (4) (2003) 297–310.

[18] i* wiki, Guideline (intermediate,layout) use the specialized
actors notation to the degree that you can gain advantage in
instantiating the actual stakeholders. (Last access: February
2015).
URL http://istar.rwth-aachen.de/tiki-index.php?

page=Guideline+%28Intermediate%2CLayout%29+Use+

the+specialized+actors+notation+to+the+degree+

that+you+can+gain+advantage+in+instantiating+

the+actual+stakeholders.&structure=i%2A+Guide

[19] J. Castro, M. Kolp, J. Mylopoulos, A requirements-driven devel-
opment methodology, in: 13th International Conference on Ad-
vanced Information Systems Engineering, CAiSE ’01, Springer-
Verlag, 2001, pp. 108–123.

[20] C. Silva, J. Castro, P. Tedesco, I. Silva, Describing agent-
oriented design patterns in tropos, in: Proceedings of the 19th
Brazilian Symposium in Software Engineering, Uberlandia, Mi-
nas Gerais, Brazil, 2005, pp. 27–78.

[21] J. Engmann, Evaluating the impact of evolving requirements on
wider system goals: Using i* methodology integrated with sat-
isfaction arguments to evaluate the impact of changing require-
ments in hiv/aids monitoring systems in the uk, Master’s thesis,
England (2009).

[22] J. Lockerbie, N. A. M. Maiden, J. Engmann, D. Randall,
S. Jones, D. Bush, Exploring the impact of software require-
ments on system-wide goals: a method using satisfaction ar-
guments and i* goal modelling, Requirements Engineering 17
(2012) 227–254.

[23] C. Lima, J. Paes, A. Rodovalho, D. Dermeval, A. Buarque, My-
Courses – A Course Scheduling System, Centro de Informática,
Universidade Federal de Pernambuco, Brasil (2011).

[24] C. C. Borba, Uma abordagem orientada a objetivos para as fases
de requisitos de linhas de produtos de software, Master’s thesis,
Brasil (2009).

[25] C. C. Borba, J. Henrique, L. Xavier, BTW – If You Go, My
Advice to You, Centro de Informática, Universidade Federal de
Pernambuco, Brasil (2009).

[26] Y. An, P. W. Dalrymple, M. Rogers, P. Gerrity, J. Horkoff, E. Yu,
Collaborative social modeling for designing a patient wellness
tracking system in a nurse-managed health care center, in: Pro-
ceedings of the 4th International Conference on Design Science
Research in Information Systems and Technology, DESRIST
’09, Association for Computing Machinery, 2009, pp. 2:1–2:14.

[27] SCORE Contest, Score – student contest on software engineer-
ing (Last access: February 2015).
URL http://score-contest.org/

[28] S. T. Hevner, Alan R.and March, J. Park, S. Ram, Design science
in information systems research, MIS quarterly 28 (1) (2004)
75–105.

[29] R. Wieringa, Design science methodology: principles and prac-
tice, in: Proceedings of the 32nd ACM/IEEE International Con-
ference on Software Engineering-Volume 2, ACM, 2010, pp.
493–494.

[30] W. J. Brown, R. C. Malveau, H. W. McCormick, T. J. Mowbray,
AntiPatterns: Refactoring Software, Architectures, and Projects
in Crisis, John Wiley & Sons, 1998.

[31] J. Horkoff, E. Yu, Comparison and evaluation of goal-oriented
satisfaction analysis techniques, Requirements Engineering

17

http://istar.rwth-aachen.de/tiki-index.php?page=Comparing+the+i%2A+Tools
http://istar.rwth-aachen.de/tiki-index.php?page=Comparing+the+i%2A+Tools
http://istar.rwth-aachen.de/tiki-index.php?page=Comparing+the+i%2A+Tools
http://eclipse.org/gmf-tooling/
http://eclipse.org/gmf-tooling/
http://wiki.eclipse.org/index.php/Ecore_Tools
http://wiki.eclipse.org/index.php/Ecore_Tools
http://wiki.eclipse.org/index.php/Ecore_Tools
http://istar.rwth-aachen.de/tiki-index.php?page=Guideline+%28Intermediate%2CLayout%29+Use+the+specialized+actors+notation+to+the+degree+that+you+can+gain+advantage+in+instantiating+the+actual+stakeholders.&structure=i%2A+Guide
http://istar.rwth-aachen.de/tiki-index.php?page=Guideline+%28Intermediate%2CLayout%29+Use+the+specialized+actors+notation+to+the+degree+that+you+can+gain+advantage+in+instantiating+the+actual+stakeholders.&structure=i%2A+Guide
http://istar.rwth-aachen.de/tiki-index.php?page=Guideline+%28Intermediate%2CLayout%29+Use+the+specialized+actors+notation+to+the+degree+that+you+can+gain+advantage+in+instantiating+the+actual+stakeholders.&structure=i%2A+Guide
http://istar.rwth-aachen.de/tiki-index.php?page=Guideline+%28Intermediate%2CLayout%29+Use+the+specialized+actors+notation+to+the+degree+that+you+can+gain+advantage+in+instantiating+the+actual+stakeholders.&structure=i%2A+Guide
http://istar.rwth-aachen.de/tiki-index.php?page=Guideline+%28Intermediate%2CLayout%29+Use+the+specialized+actors+notation+to+the+degree+that+you+can+gain+advantage+in+instantiating+the+actual+stakeholders.&structure=i%2A+Guide
http://istar.rwth-aachen.de/tiki-index.php?page=Guideline+%28Intermediate%2CLayout%29+Use+the+specialized+actors+notation+to+the+degree+that+you+can+gain+advantage+in+instantiating+the+actual+stakeholders.&structure=i%2A+Guide
http://istar.rwth-aachen.de/tiki-index.php?page=Guideline+%28Intermediate%2CLayout%29+Use+the+specialized+actors+notation+to+the+degree+that+you+can+gain+advantage+in+instantiating+the+actual+stakeholders.&structure=i%2A+Guide
http://istar.rwth-aachen.de/tiki-index.php?page=Guideline+%28Intermediate%2CLayout%29+Use+the+specialized+actors+notation+to+the+degree+that+you+can+gain+advantage+in+instantiating+the+actual+stakeholders.&structure=i%2A+Guide
http://score-contest.org/
http://score-contest.org/
http://score-contest.org/


18 (3) (2012) 199–222.
[32] A. Hilts, E. Yu, Design and evaluation of the goal-oriented de-

sign knowledge library framework, in: Proceedings of the 2012
iConference, iConference ’12, Association for Computing Ma-
chinery, 2012, pp. 384–391.

[33] R. Ramos, J. Castro, J. Araújo, A. Moreira, F. Alencar, Air-
doc – an approach to improve requirements documents, in: 22th
Brazilian Symposium on Software Engineering, SBES, 2008.

[34] A. M. L. de Vasconcelos, J. L. de la Vara, J. Sanchez, O. Pastor,
Towards cmmi-compliant business process-driven requirements
engineering, in: 8th International Conference on the Quality
of Information and Communications Technology, QUATIC ’12,
IEEE Computer Society, 2012, pp. 193–198.

[35] X. Franch, G. Grau, Towards a catalogue of patterns for defin-
ing metrics over i* models, in: 20th International Conference
on Advanced Information Systems Engineering, CAiSE ’08,
Springer-Verlag, 2008, pp. 197–212.

[36] X. Franch, A method for the definition of metrics over i* mod-
els, in: 21st International Conference on Advanced Information
Systems Engineering, CAiSE ’09, Springer-Verlag, 2009, pp.
201–215.

[37] D. Colomer, X. Franch, Stargro: Building i* metrics for agile
methodologies, in: F. Dalpiaz, J. Horkoff (Eds.), 7th Interna-
tional i* Workshop (iStar 2014), Vol. 1157 of CEUR Workshop
Proceedings, 2014.

[38] D. Zowghi, V. Gervasi, On the interplay between consistency,
completeness, and correctness in requirements evolution, Infor-
mation and Software Technology 45 (14) (2003) 993–1009.

18


	Introduction
	The i* approach
	A metrics set for i*
	Complexity metrics definition
	Completeness metrics definition
	Example

	Evaluation
	Analysed models
	Results and discussion

	Related work
	Conclusions

