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Abstract. Goal-oriented Requirements Engineering approaches have become 

popular in the Requirements Engineering community as they provide expressive 

model elements for requirements elicitation and analysis. However, as a com-

mon challenge, they are still struggling when it comes to managing the acci-

dental complexity of their models. In this paper, we provide a set of metrics, 

which are formally specified and have tool support, to measure and analyze the 

complexity of goal models, in particular i* models. The aim is to identify refac-

toring opportunities to improve the modularity of those models, and conse-

quently reduce their complexity. We evaluate these metrics by applying them to 

a set of well-known case studies from industry and academia. Our results allow 

the identification of refactoring opportunities in the evaluated models.   

Keywords: Goal-Oriented Requirements Models, i*, software metrics, model 

assessment 

1 Introduction 

Goal-oriented Requirements Engineering (GORE) has a great impact and importance 

in the Requirements Engineering community, helping in identifying, organizing, and 

structuring requirements, as well as in exploring and evaluating alternative solutions 

to a problem [1]. There are several GORE approaches, such as i* [2], KAOS [3], and 

GRL [4]. When modelling real-world systems with a GORE approach, the models can 

quickly become very complex. A common challenge for the GORE approaches is to 

manage the complexity of their models. While real-world problems have an unavoid-

able essential complexity, we need to minimize, as much as possible, the accidental 

complexity introduced by the way we model those problems [5].  

A possible way of minimizing the accidental complexity of a model is to improve 

its modularity. In particular, this can be achieved by identifying model refactoring 

opportunities. In this paper, we focus on the i* framework, and how we can manage 

the accidental complexity of i* models. In order to identify refactoring opportunities 

for these models, we define a metrics suite for assessing their complexity and the 

complexity of the elements defined in them. By collecting such metrics on several 
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different models, we are able to establish a typical usage profile of the modelling 

mechanisms. 

In practice, this profile is built using descriptive statistics analysis on the metrics 

collected from different model elements. For example, the number of goals and tasks 

for a system agent may indicate whether this agent holds too many responsibilities in 

the system. This can hint the modeler for a refactoring opportunity where this agent 

should in fact be decomposed into several sub-agents. 

The objective of this paper is to provide a metrics suite, along with the correspond-

ing tool support, targeted to the measurement and analysis of the complexity of i* 

models, with the goal of identifying refactoring opportunities to improve the modular-

ity of those models. The identification of such opportunities can be useful during the 

development of the system, where a better modularization can lead to a sounder dis-

tribution of responsibilities among the system components. If performed in a timely 

fashion, this is likely to contribute to relevant costs savings through the reduction of 

the model’s accidental complexity. Refactoring opportunities identification is also an 

asset in the context of preventive maintenance, as a facilitator for future requirements 

changes. 

Our metrics suite is integrated in an eclipse-based i* editor, so that metrics can be 

computed during the requirements modelling process, whenever the requirements 

engineer requests them. The metrics are defined using the Object Constraint Lan-

guage (OCL) [6] upon the i* metamodel. This makes our metrics set easily extensible, 

as improving the metrics set can be done by adding new OCL metrics definitions to 

the ones presented in this paper. 

In [7], we proposed and validated a metrics suite for evaluating the completeness 

and complexity of KAOS goal models, formally specified (using OCL) and incorpo-

rated in a KAOS modelling tool. The metrics suite was evaluated with several real-

world case studies. The work described in this paper shares a common approach to 

metrics definition and tool implementation. However, the goals and structure of the 

KAOS approach are significantly different from those of the i* framework. In particu-

lar, i* has a modularity mechanism – the actor’s boundaries – which is not present in 

KAOS, that paves the way for a significantly different approach to modularity, by 

encapsulating model elements within the actors boundaries. This is reflected in the 

choice of relevant complexity metrics. Actor’s boundaries are a key mechanism in the 

metrics suite proposed in this paper. Our goal is to use these metrics to leverage the 

modularity of i* models. 

This paper is organized as follows. Section 2 describes background information on 

the i* framework. Section 3 describes the metrics set, defined using the Goal-

Question-Metrics approach, and a concrete example of its application to a real-world 

model. Section 4 reports the evaluation process, including a presentation of the case 

studies used, the results obtained by applying the metrics on those case studies, and a 

discussion on the results. Section 5 discusses the related work. Section 6 draws some 

conclusions and points out directions for future work. While the paper is self-

contained, additional information such as the complete i* metamodel, the detailed 



specification of auxiliary metrics, and the fully detailed statistical analysis of the case 

studies presented in this paper can be found in this paper’s companion site1. 

2 The i* approach 

i* [2] was developed for modelling and reasoning about organizational environments 

and their information systems. It focuses on the concept of intentional actor. Actors in 

their organizational environment are viewed as having intentional properties such as 

goals, beliefs, abilities and commitments. i* has two main modelling components: the 

Strategic Dependency (SD) model and the Strategic Rationale (SR) model. The SD 

model describes the dependency relationships among the actors in an organizational 

context. In this model, an actor (called depender) depends on another actor (called 

dependee) to achieve goals and softgoals, to perform tasks and to obtain resources. 

The SR model provides a more detailed level of modelling than the SD model, since it 

focuses on the modelling of intentional elements and relationships internal to actors. 

Intentional elements (goals, softgoals, tasks and resources) are related by means-end 

or decomposition links. Means-end links are used to link goals (ends) to tasks (means) 

in order to specify alternative ways to achieve goals. Decomposition links are used to 

decompose tasks. A task can be decomposed into four types of elements: a subgoal, a 

subtask, a resource, and/or a softgoal. Apart from these two links, there are the con-

tribution links, which can be positive or negative.  

In this work we are particularly interested in assessing the complexity of i* models. 

To support this, we needed a flexible platform upon which we could define our met-

rics set. To the best of our knowledge, none of the existing i* tools provides adequate 

support for a flexible definition of such metrics (detailed comparison of the existing i* 

tool support can be found in [8, 9]). One of the important requirements of the tool was 

that it should be extensible, so that new metrics (which can potentially target different 

quality attributes) can be easily added. To fill this gap, we implemented an Eclipse-

based i* editor using Epsilon [10], EMF/GMF [11, 12] and Ecore Tools [13].  

Figure 1 presents a fragment of the i* metamodel implemented in our tool, show-

ing only the concepts which will be used in the metrics definitions proposed in this 

paper. This metamodel is the basis for the tool support for the specification of i* 

models, and their evaluation with model metrics. The root of the metamodel is the 

metaclass ISTAR, which contains all the nodes and relationships of an i* model. This 

top-level metaclass serves as a basis for model analysis. The remaining metaclasses 

can be easily mapped into some of the concepts described earlier in this section.  

                                                           
1 http://ctp.di.fct.unl.pt/~mgoul/CAiSE2014Companion/ 



 

Fig. 1. Partial i* metamodel 

3 A metrics set for i* complexity evaluation 

The purpose of this study is to evaluate the complexity of i* models. We propose a 

metrics-based analysis framework for i* models, using the Goal-Question-Metric 

(GQM) approach [14]. Table 1 summarizes the GQM-based proposal for a set of met-

rics that will allow satisfying the goal of complexity evaluation. The first column 

presents questions that will allow evaluating whether the overall goal is being 

achieved. The second column shows a set of metrics that provide quantitative infor-

mation to answer the corresponding question. Q1 concerns complexity, as perceived 

when regarding the model as a whole. In particular, we are interested in the number of 

actors, elements, and their ratio, within a model. The remaining questions are targeted 

to assessing the complexity of model elements, namely the amount of responsibilities 

supported by an actor (Q2), and the number of decompositions of actor’s goals (Q3), 

softgoals (Q4) and tasks (Q5). For each of these elements-centered questions, we 

define a basic metric (e.g. NEA, for Q2) and three additional distribution metrics pre-

senting the minimum, maximum and average values for the basic metric. 

Table 1. Goal-Question Metric for i* models evaluation 

Goal: Complexity evaluation 

Question Metric 

Q1 – How complex is 

the model, concerning 
the number of actors 

and elements? 

NAct – Number of Actors 
NElem – Number of Elements 

Q2 – Does an actor have 
too much responsibility 

in the model? 

NEA – Number of Elements of an Actor 

MinNEA – Minimum Number of Elements of an Actor 

MaxNEA – Maximum Number of Elements of an Actor 
AvgNEA – Average Number of Elements of an Actor 



Q3 – How complex is 
an actor’s goal, with 

respect to its decompo-

sitions? 

NDG – Number of Decompositions of an actor’s Goal 
MinNDG – Minimum Number of Decompositions of an actor’s Goal 

MaxNDG – Maximum Number of Decompositions of an actor’s Goal 

AvgNDG – Average Number of Decompositions of an actor’s Goal 

Q4 – How complex is 

an actor’s softgoal, with 
respect to its decompo-

sition? 

NDS – Number of Decompositions of an actor’s Softgoal 

MinNDS – Minimum Number of Decompositions of an actor’s Softgoal 
MaxNDS – Maximum Number of Decompositions of an actor’s Softgoal 

AvgNDS – Average Number of Decompositions of an actor’s Softgoal 

Q5 – How complex is 

an actor’s task, with 
respect to its decompo-

sitions? 

NDT – Number of Decompositions of an actor’s Task 

MinNDT – Minimum Number of Decompositions of an actor’s Task 
MaxNDT – Maximum Number of Decompositions of an actor’s Task 

AvgNDT – Average Number of Decompositions of an actor’s Task 

3.1 Metrics definition 

In Table 2 we present the metrics outlined in the previous section. For each question 

we present an informal definition of the metrics specified to answer it, and a formal 

definition using OCL upon the metamodel fragment presented in figure 1. When re-

quired, we include pre-conditions in the formal definition. For example, when defin-

ing metrics to compute the average decomposition of goals, softgoals, or tasks, a typi-

cal pre-condition is to ensure that there are goals, sofgoals, or tasks, to be decom-

posed. Elements without decompositions may have been modeled in order to be final 

elements. It would not make sense analyzing the extent to which they are decom-

posed. For the sake of brevity, we omit trivial auxiliary metrics definitions with basic 

counts in the paper. The full metrics suite definition in OCL, including all auxiliary 

metrics, can be found in the paper’s companion site.  

Regarding question Q1, the values of NAct (number of actors) and NElem (number 

of elements) are measures for the SD/SR model size. Size can be used as a surrogate 

for overall model complexity, and used to compare the complexity among different 

models. For example, different candidate models for the same system can be com-

pared, using these metrics, with respect to their overall complexity. 

Concerning question Q2, a high value for NEA (number of elements of an actor) 

can be an indicator that a particular actor has too much responsibility. The minimum, 

maximum and average values help the requirements engineer recognizing cases where 

the responsibility is higher than expected. Complexity can also be used for supporting 

project estimation efforts.  

Questions Q3, Q4 and Q5, provide different perspectives on the complexity associ-

ated with a particular actor. The value of NDG (number of decompositions of an ac-

tor’s goal), presented in Q3, measures the complexity of the goal decompositions 

associated with an actor. The value of NDS (number of decompositions of an actor’s 

softgoal), presented in Q4, measures the complexity of the softgoal decompositions 

associated with an actor. Finally, the value of NDT (number of decompositions of an 

actor’s task), presented in Q5, measures the complexity of the task decompositions 

associated with an actor. The minimum, maximum and average values for NDG, NDS 

and NDT help the requirements engineer identifying out of the ordinary goal, soft-

goal, or task decomposition complexities, respectively. Note that the minimum value 



is computed only for goals, softgoals, or tasks, which are decomposed. As such, it 

excludes leaf elements in its computation. 

Table 2. Metrics to satisfy the complexity goal 

Q1 – Is there a suitable number of actors and elements in the model? 

Name NAct – Number of Actors 

Informal 
definition 

Number of actors in the SD/SR model 

Formal 

definition 

context ISTAR 

def:NAct():Integer = self.hasNode -> select (n : Node | n.oclIsKindOf(Actor)) -> size() 

Name NElem – Number of Elements 

Informal 

definition 
Number of elements in the SD/SR model 

Formal 

definition 

context ISTAR 

def:NElem():Integer = self.NEOAB() + self.NEIAB() 

Requires 
NEOAB – Number of Elements Outside Actors’ Boundaries (see companion site) 

NEIAB – Number of Elements Inside Actors’ Boundaries (see companion site) 

 
 

 

 

 

 

Q2 – Does an actor have too much responsibility in the model? 

Name NEA - Number of Elements of an Actor 

Informal 

definition 
Number of elements inside an actor’s boundary in the SR model 

Formal 
definition 

context Actor 

def:NEA():Integer = self.hasElement -> select(e : Element | e.oclIsKindOf(Element)) -> 

size() 

Name MinNEA – Minimum Number of Elements of an Actor 

Informal 

definition 
Minimum number of elements inside an actor’s boundary in the SR model 

Formal 

definition 

context ISTAR 

def:MinNEA():Integer  =  self.hasNode -> select(n : Node | n.oclIsKindOf(Actor)) -> 

    iterate(n : Node; min : Integer = -1 | let aux : Integer n.oclAsType(Actor).NEA() in  
        if min = -1 then aux else min.min(aux) endif) 

Name MaxNEA – Maximum Number of Elements of an Actor 

Informal 

definition 
Maximum number of elements inside an actor’s boundary in the SR model 

Formal 
definition 

context ISTAR 

def:MaxNEA():Integer = self.hasNode -> select(n : Node | n.oclIsKindOf(Actor)) -> 
    iterate(n : Node; max : Integer = -1 | let aux : Integer = n.oclAsType(Actor).NEA() in  

        if max = -1 then aux else max.max(aux) endif) 

Name AvgNEA – Average Number of Elements of an Actor 

Informal 

definition 
Average number of elements inside an actor’s boundary in the SR model 

Formal 

definition 

context ISTAR 

pre:self.NAct() > 0 

 
context ISTAR 

def:AvgNEA():Real = self.NEA() / self.NAct() 

Requires 
NEA – Number of Elements of an Actor 

NAct – Number of Actors 



Q3 – How complex is a goal, with respect to its decompositions? 

Name NDG – Number of Decompositions of an actor’s Goal 

Informal 

definition 
Number of decompositions associated with a goal in the SR model 

Formal 
definition 

context Goal 

def:NDG():Integer = self.goalMeansEnds -> select(me : MeansEnds | 

me.oclIsKindOf(MeansEnds)) -> size() 

Name MinNDG – Minimum Number of Decompositions of an actor’s Goal 

Informal 

definition 

Minimum number of decompositions associated with a goal that is inside an actor’s bounda-

ry in the SR model 

Formal 

definition 

context Actor 

def:MinNDG():Integer = self.hasElement ->  

   select(e : Element | e.oclIsKindOf(Goal) and e.oclAsType(Goal).NDG() > 0) ->  
      iterate(e : Element; min : Integer = -1 | let aux : Integer = e.oclAsType(Goal).NDG() in  

          if min = -1 then aux else min.min(aux) endif) 

Name MaxNDG – Maximum Number of Decompositions of an actor’s Goal 

Informal 

definition 

Maximum number of decompositions associated with a goal that is inside an actor’s bounda-

ry in the SR model 

Formal 
definition 

context Actor 
def:MaxNDG():Integer = self.hasElement ->  

   select(e : Element | e.oclIsKindOf(Goal) and e.oclAsType(Goal).NDG() > 0) ->  

      iterate(e : Element; max : Integer = -1 | let aux : Integer = e.oclAsType(Goal).NDG() in  
         if max = -1 then aux else max.max(aux) endif) 

Name AvgNDG – Average Number of Decompositions of an actor’s Goal 

Informal 

definition 

Average number of decompositions associated with a goal that is inside an actor’s boundary 

in the SR model 

Formal 
definition 

context Actor 
pre:self.NGWDI() > 0 

 

context Actor 
def:AvgNDG():Real = self.NDG() / self.NGWDI() 

Requires 
NDG – Number of Decompositions of an actor’s Goal 
NGWDI – Number of Goals With Decompositions Inside (see companion site) 

 

 

 
 

 

 

Q4 – How complex is a softgoal, with respect to its decomposition? 

Name NDS – Number of Decompositions of an actor’s Softgoal 

Informal 
definition 

Number of decompositions associated with a softgoal in the SR model 

Formal 
definition 

context Softgoal 

def:NDS():Integer = self.softgoalContribution -> select(cl : ContributionLink | 

cl.oclIsKindOf(ContributionLink)) -> size() 

Name MinNDS – Minimum Number of Decompositions of an actor’s Softgoal 

Informal 
definition 

Minimum number of decompositions associated with a softgoal that is inside an actor’s 
boundary in the SR model 

Formal 

definition 

context Actor 

def:MinNDS():Integer = self.hasElement ->  

   select(e : Element | e.oclIsKindOf(Softgoal) and e.oclAsType(Softgoal).NDS() > 0) -> 

      iterate(e : Element; min : Integer = -1 | let aux : Integer =  

         e.oclAsType(Softgoal).NDS() in if min = -1 then aux else min.min(aux) endif) 



Name MaxNDS – Maximum Number of Decompositions of an actor’s Softgoal 

Informal 

definition 

Maximum number of decompositions associated with a softgoal that is inside an actor’s 

boundary in the SR model 

Formal 

definition 

context Actor 

def:MaxNDS():Integer = self.hasElement ->  
   select(e : Element | e.oclIsKindOf(Softgoal) and e.oclAsType(Softgoal).NDS() > 0) -> 

      iterate(e : Element; max : Integer = -1 | let aux : Integer =  

         e.oclAsType(Softgoal).NDS() in if max = -1 then aux else max.max(aux) endif) 

Name AvgNDS – Average Number of Decompositions of an actor’s Softgoal 

Informal 
definition 

Average number of decompositions associated with a softgoal that is inside an actor’s 
boundary in the SR model 

Formal 

definition 

context Actor 

pre:self.NSWDI() > 0 

 

context Actor 

def:AvgNDS():Real = self.NDS() / self.NSWDI() 

Requires 
NDS – Number of Decompositions of an actor’s Softgoal 
NSWDI – Number of Softgoals With Decompositions Inside (see companion site) 

 

 

 
 

 

Q5 – How complex is a task, with respect to its decompositions? 

Name NDT – Number of Decompositions of an actor’s Task 

Informal 
definition 

Number of decompositions associated with a task in the SR model 

Formal 
definition 

context Task 

def:NDT():Integer = self.taskDecompositionLink -> select(dl : DecompositionLink |  

   dl.oclIsKindOf(DecompositionLink)) -> size() 

Name MinNDT – Minimum Number of Decompositions of an actor’s Task 

Informal 

definition 

Minimum number of decompositions associated with a task that is inside an actor’s boundary 

in the model 

Formal 
definition 

context Actor 
def:MinNDT():Integer = self.hasElement ->  

   select(e : Element | e.oclIsKindOf(Task) and e.oclAsType(Task).NDT() > 0) ->  

      iterate(e : Element; min : Integer = -1 | let aux : Integer = e.oclAsType(Task).NDT() in  
         if min = -1 then aux else min.min(aux) endif) 

Name MaxNDT – Maximum Number of Decompositions of an actor’s Task 

Informal 

definition 

Maximum number of decompositions associated with a task that is inside an actor’s bounda-

ry in the SR model 

Formal 

definition 

context Actor 

Def:MaxNDT():Integer = self.hasElement ->  
   select(e : Element | e.oclIsKindOf(Task) and e.oclAsType(Task).NDT() > 0) ->  

      iterate(e : Element; max : Integer = -1 | let aux : Integer = e.oclAsType(Task).NDT() in  

         if max = -1 then aux else max.max(aux) endif) 

Name AvgNDT – Average Number of Decompositions of an actor’s Task 

Informal 
definition 

Average number of decompositions associated with a task that is inside an actor’s boundary 
in the SR model 

Formal 

definition 

context Actor 

pre:self.NTWDI() > 0 
 

context Actor 

def:AvgNDTI():Real = self.NDT() / self.NTWDI() 

Requires 
NDT – Number of Decompositions of an actor’s Task 
NTWDI – Number of Tasks With Decompositions Inside (see companion site) 



3.2 Example 

Figure 2 shows a fragment of the Media Shop (MS) case study, whose main objective 

is to allow an online customer to examine the items in the Medi@ internet catalogue 

(books, newspapers, magazines, audio CD, videotapes, and the like) and place orders. 

The figure, taken from our tool, shows the actor Media Shop and some of its ele-

ments, as well as the model metrics.  

 

 

Fig. 2. Application of the tool and the metrics to the Media Shop case study 

The tool allows to create i* models using a visual language and provides met-

rics values for the model. These values can be updated at any time of the construction 

process. As such, they can be valuable to detect potential problems early in the pro-

cess, such as a high accidental complexity caused by a modelling option.  

4 Evaluation 

4.1 Case studies 

To evaluate the presented metrics, we modelled i* case studies, namely Media Shop 

(MS) [15], Newspaper Office (NO) [16], Health Care (HC) [2], Health Protection 

Agency (HPA) [17] and National Air Traffic Services (NATS) [17] with our tool, and 

then collected the corresponding metrics. The case studies MS, NO, and HC have 

been extensively used in the literature, while HPA and NATS are real-world case 

studies, also available in the literature. They target different domains and have differ-

ent essential complexities. A common characteristic of these models is that they are 

available with full details, making them good candidates for evaluation. 



4.2 Results and discussion 

In this section we present the main findings from our statistics analysis of the collect-

ed metrics. The statistics data files and scripts for performing the statistics analysis 

outlined here can be found in the paper’s companion site. 

Concerning model size (Q1, Fig. 3a and Fig. 3b), the NATS (National Air Traffic 

Services) system has, approximately, twice the size of the second largest system 

(HPA, Health Protection Agency). The HC (Health Care) system has less actors, but 

more elements than the MS (Media Shop) and NO (Newspaper Office) systems, 

which have a very similar size. In fact, if we compute the elements to actors ratio 

(Fig. 3c), we note that HC has a higher ratio than all the other systems, which have 

very similar ratios. This may suggest that HC could be an interesting candidate for 

refactoring. In contrast, we note that the most complex system, in terms of size, has 

the lowest element/actor density, suggesting a good overall modularity. 

This overview on complexity is but a first impression. We need to analyze more 

detailed features to get a clearer picture of the modularity profile of these systems. For 

each of the counting metrics NDG, NDS and NDT (number of decompositions of an 

actor’s goal, softgoal and task, respectively), we present here a boxplot chart with 

their distributions on the actors of their corresponding systems, where we can identify 

the outliers (denoted with O) and extremes (denoted with *), in Fig. 3d-f.  

A closer inspection on the boxplot graphs (Fig. 3d-f) shows that there are two ac-

tors which present outlier, or even extreme values, in NDS and NDT. These should be 

our most likely candidates for further scrutiny. For example, the actor Civil ATCO 

(Civilian Air Traffic Controller), from the National Air Traffic Services system, has 

an outlier value for the softgoal decomposition (NDS) and an extreme value for the 

task decomposition (NDT) metrics. Civil ATCO is a crucial actor in that system, 

whose specification is much more complex than that of most other actors in the same 

system. 

There are at least two possible problems that should be checked, concerning the 

Civil ATCO actor’s decomposition. A first potential problem is that this actor may 

have too many responsibilities. A typical refactoring would be to decompose the actor 

into sub-actors, using the is-part-of relationship, where each sub-actor would be re-

sponsible for a sub-system. This anti-pattern and its proposed refactoring are similar 

to god classes [18] and their refactoring, in object-oriented design. Note that, some-

times, the extra complexity is not of an accidental nature, but rather of an essential 

one. In such case, this analysis is still useful, in the sense that it highlights an actor in 

the system which has an extremely high essential complexity associated with it. This 

may hint project managers to assign more resources to quality assurance activities 

(e.g. inspections and testing) to artifacts related to the implementation of the require-

ments associated with this actor.  

It may also be the case that the requirements engineer may over-decompose these 

goals, softgoals, or tasks, by following a functional decomposition strategy, leading to 

poor modularity. This is similar to the functional decomposition anti-pattern [18], 

where the encapsulation principle is neglected. Another consequence is that the ab-

straction level of the model lowers: including too many (design) details may obfus-



cate the requirements model, making it harder to understand and evolve. Abstracting 

away the unnecessary detailed decompositions can improve the overall modularity of 

the requirements model. 

 

 

 
a) Number of actors in the system 

 

 
b) Number of elements in the system 

 

 

 
c) Goal decompositions per actor 

 
d) NDG distribution 

 

 

 
e) NDS distribution 

 
f) NDT distribution 

Fig. 3. Metrics values for our case studies 



5 Related work 

Horkoff and Yu [19] evaluate seven goal satisfaction analysis procedures using avail-

able tools that implement those procedures. They evaluate three sample goal models. 

The results help to understand the ways in which procedural design choices affect 

analysis results, and how differences in analysis results could lead to different rec-

ommendations over alternatives in the model. Compared to our work, they study a 

different aspect of goal modelling, i.e. goal satisfaction analysis, not complexity. 

Hilts and Yu [20] describe the Goal-Oriented Design Knowledge Library (GO-

DKL) framework. This framework provides an approach for extracting, coding and 

storing relational excerpts of design knowledge from academic publications. This 

framework was designed for knowledge reuse purposes. Our work could extend that 

framework by providing information about the complexity of those existing models. 

Ramos et al. [21] claim that early identification of syntactical problems (e.g., large 

and unclear descriptions, duplicated information) and the removal of their causes can 

improve the quality of use case models. They describe the AIRDoc approach, which 

aims to facilitate the identification of potential problems in requirements documents 

using refactoring and patterns. To evaluate use case models, the AIRDoc process uses 

the GQM approach to elaborate goals and define questions to be addressed by met-

rics. Their target quality attributes are reusability and maintainability, different from 

ours. Their metrics were neither formally defined nor implemented in a tool. 

Vasconcelos et al. [22] claim that GORE and MDD can be integrated to fulfill the 

requirements of a software process maturity model in order to support the application 

of GORE methodologies in industry scenarios. The proposed approach, called GO-

MDD, describes a six-stage process that integrates the i* framework into a concrete 

MDD process (OO-Method), applying the CMMi perspective. The fourth stage of this 

process concerns the verification, analysis and evaluation of the models defined in the 

previous stages; and uses a set of measurements, specified with OCL rules, that eval-

uate the completeness of the MDD model generation with respect to the requirements 

specified in the i* model. The set of metrics used in this stage is presented in [21], 

using GQM. Compared to ours, their approach focuses on a different set of metrics as 

their goal was to support the evaluation of i* models to generate MDD models. 

Franch and Grau [23] propose a framework for defining metrics in i* models, to 

analyze the quality of individual models, and to compare alternative models over 

certain properties. This framework uses a catalogue of patterns for defining metrics, 

and OCL to formulate these metrics. In a follow up work, Franch proposes a generic 

method to better guide the analyst throughout the metrics definition process, over i* 

models [24]. The method is applied to evaluate business process performance. Their 

approach is more focused on the process, and more generic, while we focus on modu-

larity assessment of i* models. 



6 Conclusions 

In this paper, we proposed a metrics suite for evaluating the complexity of i* goal 

models, formally specified (using OCL), implemented and incorporated in an eclipse 

based modelling tool. The metrics were proposed using the GQM approach. The se-

lected questions allow evaluating the complexity of the model as a whole concerning 

its size, and the complexity of an actor and its model elements (i.e. goals, softgoals 

and tasks). The set of metrics provide quantitative information to answer the corre-

sponding questions. The contribution of this paper is that evaluating complexity at 

early stages to identify modularity problems of the models allows avoiding eventual 

extra costs in during the later stages of software development and also during soft-

ware maintenance and evolution. The realization that the modularity of a require-

ments model can be improved can trigger requirements refactoring opportunities, like 

decomposing a system’s actor using an is-part-of relationship between sub-actors, or 

abstracting over-decomposed goals, softgoals, or tasks. These metrics were validated 

by applying them to well-known industrial and academic case studies. The results of 

these metrics also reveal a pattern of usage in goal modelling concerning modularity 

of those models. 

For future work, we intend to replicate this evaluation with other i* models and ex-

tend the metrics set to cover other model quality attributes, such as correctness. The 

final aim is to provide a metrics-based modelling support in GORE tools. In particu-

lar, with an increased number of evaluated models, we will be able to, for example, 

identify thresholds for suggesting merging and/or decomposing model elements to 

reduce complexity of an i* model. As a cross-validation for those thresholds, we plan 

to conduct an experiment with requirements engineers to assess the extent to which 

those thresholds are correlated with an increased difficulty in i* model comprehen-

sion. We also plan to define and apply refactoring patterns for GORE models.   
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