

Identifying modularity improvement opportunities in

goal-oriented requirements models

Catarina Gralha, Miguel Goulão, João Araújo

CITI, Departamento de Informática

Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa

Lisbon, Portugal

acg.almeida@campus.fct.unl.pt, mgoul@fct.unl.pt,

joao.araujo@fct.unl.pt

Abstract. Goal-oriented Requirements Engineering approaches have become

popular in the Requirements Engineering community as they provide expressive

model elements for requirements elicitation and analysis. However, as a com-

mon challenge, they are still struggling when it comes to managing the acci-

dental complexity of their models. In this paper, we provide a set of metrics,

which are formally specified and have tool support, to measure and analyze the

complexity of goal models, in particular i* models. The aim is to identify refac-

toring opportunities to improve the modularity of those models, and conse-

quently reduce their complexity. We evaluate these metrics by applying them to

a set of well-known case studies from industry and academia. Our results allow

the identification of refactoring opportunities in the evaluated models.

Keywords: Goal-Oriented Requirements Models, i*, software metrics, model

assessment

1 Introduction

Goal-oriented Requirements Engineering (GORE) has a great impact and importance

in the Requirements Engineering community, helping in identifying, organizing, and

structuring requirements, as well as in exploring and evaluating alternative solutions

to a problem [1]. There are several GORE approaches, such as i* [2], KAOS [3], and

GRL [4]. When modelling real-world systems with a GORE approach, the models can

quickly become very complex. A common challenge for the GORE approaches is to

manage the complexity of their models. While real-world problems have an unavoid-

able essential complexity, we need to minimize, as much as possible, the accidental

complexity introduced by the way we model those problems [5].

A possible way of minimizing the accidental complexity of a model is to improve

its modularity. In particular, this can be achieved by identifying model refactoring

opportunities. In this paper, we focus on the i* framework, and how we can manage

the accidental complexity of i* models. In order to identify refactoring opportunities

for these models, we define a metrics suite for assessing their complexity and the

complexity of the elements defined in them. By collecting such metrics on several

mailto:acg.almeida@campus.fct.unl.pt
mailto:mgoul@fct.unl.pt
mailto:joao.araujo@fct.unl.pt

different models, we are able to establish a typical usage profile of the modelling

mechanisms.

In practice, this profile is built using descriptive statistics analysis on the metrics

collected from different model elements. For example, the number of goals and tasks

for a system agent may indicate whether this agent holds too many responsibilities in

the system. This can hint the modeler for a refactoring opportunity where this agent

should in fact be decomposed into several sub-agents.

The objective of this paper is to provide a metrics suite, along with the correspond-

ing tool support, targeted to the measurement and analysis of the complexity of i*

models, with the goal of identifying refactoring opportunities to improve the modular-

ity of those models. The identification of such opportunities can be useful during the

development of the system, where a better modularization can lead to a sounder dis-

tribution of responsibilities among the system components. If performed in a timely

fashion, this is likely to contribute to relevant costs savings through the reduction of

the model’s accidental complexity. Refactoring opportunities identification is also an

asset in the context of preventive maintenance, as a facilitator for future requirements

changes.

Our metrics suite is integrated in an eclipse-based i* editor, so that metrics can be

computed during the requirements modelling process, whenever the requirements

engineer requests them. The metrics are defined using the Object Constraint Lan-

guage (OCL) [6] upon the i* metamodel. This makes our metrics set easily extensible,

as improving the metrics set can be done by adding new OCL metrics definitions to

the ones presented in this paper.

In [7], we proposed and validated a metrics suite for evaluating the completeness

and complexity of KAOS goal models, formally specified (using OCL) and incorpo-

rated in a KAOS modelling tool. The metrics suite was evaluated with several real-

world case studies. The work described in this paper shares a common approach to

metrics definition and tool implementation. However, the goals and structure of the

KAOS approach are significantly different from those of the i* framework. In particu-

lar, i* has a modularity mechanism – the actor’s boundaries – which is not present in

KAOS, that paves the way for a significantly different approach to modularity, by

encapsulating model elements within the actors boundaries. This is reflected in the

choice of relevant complexity metrics. Actor’s boundaries are a key mechanism in the

metrics suite proposed in this paper. Our goal is to use these metrics to leverage the

modularity of i* models.

This paper is organized as follows. Section 2 describes background information on

the i* framework. Section 3 describes the metrics set, defined using the Goal-

Question-Metrics approach, and a concrete example of its application to a real-world

model. Section 4 reports the evaluation process, including a presentation of the case

studies used, the results obtained by applying the metrics on those case studies, and a

discussion on the results. Section 5 discusses the related work. Section 6 draws some

conclusions and points out directions for future work. While the paper is self-

contained, additional information such as the complete i* metamodel, the detailed

specification of auxiliary metrics, and the fully detailed statistical analysis of the case

studies presented in this paper can be found in this paper’s companion site1.

2 The i* approach

i* [2] was developed for modelling and reasoning about organizational environments

and their information systems. It focuses on the concept of intentional actor. Actors in

their organizational environment are viewed as having intentional properties such as

goals, beliefs, abilities and commitments. i* has two main modelling components: the

Strategic Dependency (SD) model and the Strategic Rationale (SR) model. The SD

model describes the dependency relationships among the actors in an organizational

context. In this model, an actor (called depender) depends on another actor (called

dependee) to achieve goals and softgoals, to perform tasks and to obtain resources.

The SR model provides a more detailed level of modelling than the SD model, since it

focuses on the modelling of intentional elements and relationships internal to actors.

Intentional elements (goals, softgoals, tasks and resources) are related by means-end

or decomposition links. Means-end links are used to link goals (ends) to tasks (means)

in order to specify alternative ways to achieve goals. Decomposition links are used to

decompose tasks. A task can be decomposed into four types of elements: a subgoal, a

subtask, a resource, and/or a softgoal. Apart from these two links, there are the con-

tribution links, which can be positive or negative.

In this work we are particularly interested in assessing the complexity of i* models.

To support this, we needed a flexible platform upon which we could define our met-

rics set. To the best of our knowledge, none of the existing i* tools provides adequate

support for a flexible definition of such metrics (detailed comparison of the existing i*

tool support can be found in [8, 9]). One of the important requirements of the tool was

that it should be extensible, so that new metrics (which can potentially target different

quality attributes) can be easily added. To fill this gap, we implemented an Eclipse-

based i* editor using Epsilon [10], EMF/GMF [11, 12] and Ecore Tools [13].

Figure 1 presents a fragment of the i* metamodel implemented in our tool, show-

ing only the concepts which will be used in the metrics definitions proposed in this

paper. This metamodel is the basis for the tool support for the specification of i*

models, and their evaluation with model metrics. The root of the metamodel is the

metaclass ISTAR, which contains all the nodes and relationships of an i* model. This

top-level metaclass serves as a basis for model analysis. The remaining metaclasses

can be easily mapped into some of the concepts described earlier in this section.

1 http://ctp.di.fct.unl.pt/~mgoul/CAiSE2014Companion/

Fig. 1. Partial i* metamodel

3 A metrics set for i* complexity evaluation

The purpose of this study is to evaluate the complexity of i* models. We propose a

metrics-based analysis framework for i* models, using the Goal-Question-Metric

(GQM) approach [14]. Table 1 summarizes the GQM-based proposal for a set of met-

rics that will allow satisfying the goal of complexity evaluation. The first column

presents questions that will allow evaluating whether the overall goal is being

achieved. The second column shows a set of metrics that provide quantitative infor-

mation to answer the corresponding question. Q1 concerns complexity, as perceived

when regarding the model as a whole. In particular, we are interested in the number of

actors, elements, and their ratio, within a model. The remaining questions are targeted

to assessing the complexity of model elements, namely the amount of responsibilities

supported by an actor (Q2), and the number of decompositions of actor’s goals (Q3),

softgoals (Q4) and tasks (Q5). For each of these elements-centered questions, we

define a basic metric (e.g. NEA, for Q2) and three additional distribution metrics pre-

senting the minimum, maximum and average values for the basic metric.

Table 1. Goal-Question Metric for i* models evaluation

Goal: Complexity evaluation

Question Metric

Q1 – How complex is

the model, concerning
the number of actors

and elements?

NAct – Number of Actors
NElem – Number of Elements

Q2 – Does an actor have
too much responsibility

in the model?

NEA – Number of Elements of an Actor

MinNEA – Minimum Number of Elements of an Actor

MaxNEA – Maximum Number of Elements of an Actor
AvgNEA – Average Number of Elements of an Actor

Q3 – How complex is
an actor’s goal, with

respect to its decompo-

sitions?

NDG – Number of Decompositions of an actor’s Goal
MinNDG – Minimum Number of Decompositions of an actor’s Goal

MaxNDG – Maximum Number of Decompositions of an actor’s Goal

AvgNDG – Average Number of Decompositions of an actor’s Goal

Q4 – How complex is

an actor’s softgoal, with
respect to its decompo-

sition?

NDS – Number of Decompositions of an actor’s Softgoal

MinNDS – Minimum Number of Decompositions of an actor’s Softgoal
MaxNDS – Maximum Number of Decompositions of an actor’s Softgoal

AvgNDS – Average Number of Decompositions of an actor’s Softgoal

Q5 – How complex is

an actor’s task, with
respect to its decompo-

sitions?

NDT – Number of Decompositions of an actor’s Task

MinNDT – Minimum Number of Decompositions of an actor’s Task
MaxNDT – Maximum Number of Decompositions of an actor’s Task

AvgNDT – Average Number of Decompositions of an actor’s Task

3.1 Metrics definition

In Table 2 we present the metrics outlined in the previous section. For each question

we present an informal definition of the metrics specified to answer it, and a formal

definition using OCL upon the metamodel fragment presented in figure 1. When re-

quired, we include pre-conditions in the formal definition. For example, when defin-

ing metrics to compute the average decomposition of goals, softgoals, or tasks, a typi-

cal pre-condition is to ensure that there are goals, sofgoals, or tasks, to be decom-

posed. Elements without decompositions may have been modeled in order to be final

elements. It would not make sense analyzing the extent to which they are decom-

posed. For the sake of brevity, we omit trivial auxiliary metrics definitions with basic

counts in the paper. The full metrics suite definition in OCL, including all auxiliary

metrics, can be found in the paper’s companion site.

Regarding question Q1, the values of NAct (number of actors) and NElem (number

of elements) are measures for the SD/SR model size. Size can be used as a surrogate

for overall model complexity, and used to compare the complexity among different

models. For example, different candidate models for the same system can be com-

pared, using these metrics, with respect to their overall complexity.

Concerning question Q2, a high value for NEA (number of elements of an actor)

can be an indicator that a particular actor has too much responsibility. The minimum,

maximum and average values help the requirements engineer recognizing cases where

the responsibility is higher than expected. Complexity can also be used for supporting

project estimation efforts.

Questions Q3, Q4 and Q5, provide different perspectives on the complexity associ-

ated with a particular actor. The value of NDG (number of decompositions of an ac-

tor’s goal), presented in Q3, measures the complexity of the goal decompositions

associated with an actor. The value of NDS (number of decompositions of an actor’s

softgoal), presented in Q4, measures the complexity of the softgoal decompositions

associated with an actor. Finally, the value of NDT (number of decompositions of an

actor’s task), presented in Q5, measures the complexity of the task decompositions

associated with an actor. The minimum, maximum and average values for NDG, NDS

and NDT help the requirements engineer identifying out of the ordinary goal, soft-

goal, or task decomposition complexities, respectively. Note that the minimum value

is computed only for goals, softgoals, or tasks, which are decomposed. As such, it

excludes leaf elements in its computation.

Table 2. Metrics to satisfy the complexity goal

Q1 – Is there a suitable number of actors and elements in the model?

Name NAct – Number of Actors

Informal
definition

Number of actors in the SD/SR model

Formal

definition

context ISTAR

def:NAct():Integer = self.hasNode -> select (n : Node | n.oclIsKindOf(Actor)) -> size()

Name NElem – Number of Elements

Informal

definition
Number of elements in the SD/SR model

Formal

definition

context ISTAR

def:NElem():Integer = self.NEOAB() + self.NEIAB()

Requires
NEOAB – Number of Elements Outside Actors’ Boundaries (see companion site)

NEIAB – Number of Elements Inside Actors’ Boundaries (see companion site)

Q2 – Does an actor have too much responsibility in the model?

Name NEA - Number of Elements of an Actor

Informal

definition
Number of elements inside an actor’s boundary in the SR model

Formal
definition

context Actor

def:NEA():Integer = self.hasElement -> select(e : Element | e.oclIsKindOf(Element)) ->

size()

Name MinNEA – Minimum Number of Elements of an Actor

Informal

definition
Minimum number of elements inside an actor’s boundary in the SR model

Formal

definition

context ISTAR

def:MinNEA():Integer = self.hasNode -> select(n : Node | n.oclIsKindOf(Actor)) ->

 iterate(n : Node; min : Integer = -1 | let aux : Integer n.oclAsType(Actor).NEA() in
 if min = -1 then aux else min.min(aux) endif)

Name MaxNEA – Maximum Number of Elements of an Actor

Informal

definition
Maximum number of elements inside an actor’s boundary in the SR model

Formal
definition

context ISTAR

def:MaxNEA():Integer = self.hasNode -> select(n : Node | n.oclIsKindOf(Actor)) ->
 iterate(n : Node; max : Integer = -1 | let aux : Integer = n.oclAsType(Actor).NEA() in

 if max = -1 then aux else max.max(aux) endif)

Name AvgNEA – Average Number of Elements of an Actor

Informal

definition
Average number of elements inside an actor’s boundary in the SR model

Formal

definition

context ISTAR

pre:self.NAct() > 0

context ISTAR

def:AvgNEA():Real = self.NEA() / self.NAct()

Requires
NEA – Number of Elements of an Actor

NAct – Number of Actors

Q3 – How complex is a goal, with respect to its decompositions?

Name NDG – Number of Decompositions of an actor’s Goal

Informal

definition
Number of decompositions associated with a goal in the SR model

Formal
definition

context Goal

def:NDG():Integer = self.goalMeansEnds -> select(me : MeansEnds |

me.oclIsKindOf(MeansEnds)) -> size()

Name MinNDG – Minimum Number of Decompositions of an actor’s Goal

Informal

definition

Minimum number of decompositions associated with a goal that is inside an actor’s bounda-

ry in the SR model

Formal

definition

context Actor

def:MinNDG():Integer = self.hasElement ->

 select(e : Element | e.oclIsKindOf(Goal) and e.oclAsType(Goal).NDG() > 0) ->
 iterate(e : Element; min : Integer = -1 | let aux : Integer = e.oclAsType(Goal).NDG() in

 if min = -1 then aux else min.min(aux) endif)

Name MaxNDG – Maximum Number of Decompositions of an actor’s Goal

Informal

definition

Maximum number of decompositions associated with a goal that is inside an actor’s bounda-

ry in the SR model

Formal
definition

context Actor
def:MaxNDG():Integer = self.hasElement ->

 select(e : Element | e.oclIsKindOf(Goal) and e.oclAsType(Goal).NDG() > 0) ->

 iterate(e : Element; max : Integer = -1 | let aux : Integer = e.oclAsType(Goal).NDG() in
 if max = -1 then aux else max.max(aux) endif)

Name AvgNDG – Average Number of Decompositions of an actor’s Goal

Informal

definition

Average number of decompositions associated with a goal that is inside an actor’s boundary

in the SR model

Formal
definition

context Actor
pre:self.NGWDI() > 0

context Actor
def:AvgNDG():Real = self.NDG() / self.NGWDI()

Requires
NDG – Number of Decompositions of an actor’s Goal
NGWDI – Number of Goals With Decompositions Inside (see companion site)

Q4 – How complex is a softgoal, with respect to its decomposition?

Name NDS – Number of Decompositions of an actor’s Softgoal

Informal
definition

Number of decompositions associated with a softgoal in the SR model

Formal
definition

context Softgoal

def:NDS():Integer = self.softgoalContribution -> select(cl : ContributionLink |

cl.oclIsKindOf(ContributionLink)) -> size()

Name MinNDS – Minimum Number of Decompositions of an actor’s Softgoal

Informal
definition

Minimum number of decompositions associated with a softgoal that is inside an actor’s
boundary in the SR model

Formal

definition

context Actor

def:MinNDS():Integer = self.hasElement ->

 select(e : Element | e.oclIsKindOf(Softgoal) and e.oclAsType(Softgoal).NDS() > 0) ->

 iterate(e : Element; min : Integer = -1 | let aux : Integer =

 e.oclAsType(Softgoal).NDS() in if min = -1 then aux else min.min(aux) endif)

Name MaxNDS – Maximum Number of Decompositions of an actor’s Softgoal

Informal

definition

Maximum number of decompositions associated with a softgoal that is inside an actor’s

boundary in the SR model

Formal

definition

context Actor

def:MaxNDS():Integer = self.hasElement ->
 select(e : Element | e.oclIsKindOf(Softgoal) and e.oclAsType(Softgoal).NDS() > 0) ->

 iterate(e : Element; max : Integer = -1 | let aux : Integer =

 e.oclAsType(Softgoal).NDS() in if max = -1 then aux else max.max(aux) endif)

Name AvgNDS – Average Number of Decompositions of an actor’s Softgoal

Informal
definition

Average number of decompositions associated with a softgoal that is inside an actor’s
boundary in the SR model

Formal

definition

context Actor

pre:self.NSWDI() > 0

context Actor

def:AvgNDS():Real = self.NDS() / self.NSWDI()

Requires
NDS – Number of Decompositions of an actor’s Softgoal
NSWDI – Number of Softgoals With Decompositions Inside (see companion site)

Q5 – How complex is a task, with respect to its decompositions?

Name NDT – Number of Decompositions of an actor’s Task

Informal
definition

Number of decompositions associated with a task in the SR model

Formal
definition

context Task

def:NDT():Integer = self.taskDecompositionLink -> select(dl : DecompositionLink |

 dl.oclIsKindOf(DecompositionLink)) -> size()

Name MinNDT – Minimum Number of Decompositions of an actor’s Task

Informal

definition

Minimum number of decompositions associated with a task that is inside an actor’s boundary

in the model

Formal
definition

context Actor
def:MinNDT():Integer = self.hasElement ->

 select(e : Element | e.oclIsKindOf(Task) and e.oclAsType(Task).NDT() > 0) ->

 iterate(e : Element; min : Integer = -1 | let aux : Integer = e.oclAsType(Task).NDT() in
 if min = -1 then aux else min.min(aux) endif)

Name MaxNDT – Maximum Number of Decompositions of an actor’s Task

Informal

definition

Maximum number of decompositions associated with a task that is inside an actor’s bounda-

ry in the SR model

Formal

definition

context Actor

Def:MaxNDT():Integer = self.hasElement ->
 select(e : Element | e.oclIsKindOf(Task) and e.oclAsType(Task).NDT() > 0) ->

 iterate(e : Element; max : Integer = -1 | let aux : Integer = e.oclAsType(Task).NDT() in

 if max = -1 then aux else max.max(aux) endif)

Name AvgNDT – Average Number of Decompositions of an actor’s Task

Informal
definition

Average number of decompositions associated with a task that is inside an actor’s boundary
in the SR model

Formal

definition

context Actor

pre:self.NTWDI() > 0

context Actor

def:AvgNDTI():Real = self.NDT() / self.NTWDI()

Requires
NDT – Number of Decompositions of an actor’s Task
NTWDI – Number of Tasks With Decompositions Inside (see companion site)

3.2 Example

Figure 2 shows a fragment of the Media Shop (MS) case study, whose main objective

is to allow an online customer to examine the items in the Medi@ internet catalogue

(books, newspapers, magazines, audio CD, videotapes, and the like) and place orders.

The figure, taken from our tool, shows the actor Media Shop and some of its ele-

ments, as well as the model metrics.

Fig. 2. Application of the tool and the metrics to the Media Shop case study

The tool allows to create i* models using a visual language and provides met-

rics values for the model. These values can be updated at any time of the construction

process. As such, they can be valuable to detect potential problems early in the pro-

cess, such as a high accidental complexity caused by a modelling option.

4 Evaluation

4.1 Case studies

To evaluate the presented metrics, we modelled i* case studies, namely Media Shop

(MS) [15], Newspaper Office (NO) [16], Health Care (HC) [2], Health Protection

Agency (HPA) [17] and National Air Traffic Services (NATS) [17] with our tool, and

then collected the corresponding metrics. The case studies MS, NO, and HC have

been extensively used in the literature, while HPA and NATS are real-world case

studies, also available in the literature. They target different domains and have differ-

ent essential complexities. A common characteristic of these models is that they are

available with full details, making them good candidates for evaluation.

4.2 Results and discussion

In this section we present the main findings from our statistics analysis of the collect-

ed metrics. The statistics data files and scripts for performing the statistics analysis

outlined here can be found in the paper’s companion site.

Concerning model size (Q1, Fig. 3a and Fig. 3b), the NATS (National Air Traffic

Services) system has, approximately, twice the size of the second largest system

(HPA, Health Protection Agency). The HC (Health Care) system has less actors, but

more elements than the MS (Media Shop) and NO (Newspaper Office) systems,

which have a very similar size. In fact, if we compute the elements to actors ratio

(Fig. 3c), we note that HC has a higher ratio than all the other systems, which have

very similar ratios. This may suggest that HC could be an interesting candidate for

refactoring. In contrast, we note that the most complex system, in terms of size, has

the lowest element/actor density, suggesting a good overall modularity.

This overview on complexity is but a first impression. We need to analyze more

detailed features to get a clearer picture of the modularity profile of these systems. For

each of the counting metrics NDG, NDS and NDT (number of decompositions of an

actor’s goal, softgoal and task, respectively), we present here a boxplot chart with

their distributions on the actors of their corresponding systems, where we can identify

the outliers (denoted with O) and extremes (denoted with *), in Fig. 3d-f.

A closer inspection on the boxplot graphs (Fig. 3d-f) shows that there are two ac-

tors which present outlier, or even extreme values, in NDS and NDT. These should be

our most likely candidates for further scrutiny. For example, the actor Civil ATCO

(Civilian Air Traffic Controller), from the National Air Traffic Services system, has

an outlier value for the softgoal decomposition (NDS) and an extreme value for the

task decomposition (NDT) metrics. Civil ATCO is a crucial actor in that system,

whose specification is much more complex than that of most other actors in the same

system.

There are at least two possible problems that should be checked, concerning the

Civil ATCO actor’s decomposition. A first potential problem is that this actor may

have too many responsibilities. A typical refactoring would be to decompose the actor

into sub-actors, using the is-part-of relationship, where each sub-actor would be re-

sponsible for a sub-system. This anti-pattern and its proposed refactoring are similar

to god classes [18] and their refactoring, in object-oriented design. Note that, some-

times, the extra complexity is not of an accidental nature, but rather of an essential

one. In such case, this analysis is still useful, in the sense that it highlights an actor in

the system which has an extremely high essential complexity associated with it. This

may hint project managers to assign more resources to quality assurance activities

(e.g. inspections and testing) to artifacts related to the implementation of the require-

ments associated with this actor.

It may also be the case that the requirements engineer may over-decompose these

goals, softgoals, or tasks, by following a functional decomposition strategy, leading to

poor modularity. This is similar to the functional decomposition anti-pattern [18],

where the encapsulation principle is neglected. Another consequence is that the ab-

straction level of the model lowers: including too many (design) details may obfus-

cate the requirements model, making it harder to understand and evolve. Abstracting

away the unnecessary detailed decompositions can improve the overall modularity of

the requirements model.

a) Number of actors in the system

b) Number of elements in the system

c) Goal decompositions per actor

d) NDG distribution

e) NDS distribution

f) NDT distribution

Fig. 3. Metrics values for our case studies

5 Related work

Horkoff and Yu [19] evaluate seven goal satisfaction analysis procedures using avail-

able tools that implement those procedures. They evaluate three sample goal models.

The results help to understand the ways in which procedural design choices affect

analysis results, and how differences in analysis results could lead to different rec-

ommendations over alternatives in the model. Compared to our work, they study a

different aspect of goal modelling, i.e. goal satisfaction analysis, not complexity.

Hilts and Yu [20] describe the Goal-Oriented Design Knowledge Library (GO-

DKL) framework. This framework provides an approach for extracting, coding and

storing relational excerpts of design knowledge from academic publications. This

framework was designed for knowledge reuse purposes. Our work could extend that

framework by providing information about the complexity of those existing models.

Ramos et al. [21] claim that early identification of syntactical problems (e.g., large

and unclear descriptions, duplicated information) and the removal of their causes can

improve the quality of use case models. They describe the AIRDoc approach, which

aims to facilitate the identification of potential problems in requirements documents

using refactoring and patterns. To evaluate use case models, the AIRDoc process uses

the GQM approach to elaborate goals and define questions to be addressed by met-

rics. Their target quality attributes are reusability and maintainability, different from

ours. Their metrics were neither formally defined nor implemented in a tool.

Vasconcelos et al. [22] claim that GORE and MDD can be integrated to fulfill the

requirements of a software process maturity model in order to support the application

of GORE methodologies in industry scenarios. The proposed approach, called GO-

MDD, describes a six-stage process that integrates the i* framework into a concrete

MDD process (OO-Method), applying the CMMi perspective. The fourth stage of this

process concerns the verification, analysis and evaluation of the models defined in the

previous stages; and uses a set of measurements, specified with OCL rules, that eval-

uate the completeness of the MDD model generation with respect to the requirements

specified in the i* model. The set of metrics used in this stage is presented in [21],

using GQM. Compared to ours, their approach focuses on a different set of metrics as

their goal was to support the evaluation of i* models to generate MDD models.

Franch and Grau [23] propose a framework for defining metrics in i* models, to

analyze the quality of individual models, and to compare alternative models over

certain properties. This framework uses a catalogue of patterns for defining metrics,

and OCL to formulate these metrics. In a follow up work, Franch proposes a generic

method to better guide the analyst throughout the metrics definition process, over i*

models [24]. The method is applied to evaluate business process performance. Their

approach is more focused on the process, and more generic, while we focus on modu-

larity assessment of i* models.

6 Conclusions

In this paper, we proposed a metrics suite for evaluating the complexity of i* goal

models, formally specified (using OCL), implemented and incorporated in an eclipse

based modelling tool. The metrics were proposed using the GQM approach. The se-

lected questions allow evaluating the complexity of the model as a whole concerning

its size, and the complexity of an actor and its model elements (i.e. goals, softgoals

and tasks). The set of metrics provide quantitative information to answer the corre-

sponding questions. The contribution of this paper is that evaluating complexity at

early stages to identify modularity problems of the models allows avoiding eventual

extra costs in during the later stages of software development and also during soft-

ware maintenance and evolution. The realization that the modularity of a require-

ments model can be improved can trigger requirements refactoring opportunities, like

decomposing a system’s actor using an is-part-of relationship between sub-actors, or

abstracting over-decomposed goals, softgoals, or tasks. These metrics were validated

by applying them to well-known industrial and academic case studies. The results of

these metrics also reveal a pattern of usage in goal modelling concerning modularity

of those models.

For future work, we intend to replicate this evaluation with other i* models and ex-

tend the metrics set to cover other model quality attributes, such as correctness. The

final aim is to provide a metrics-based modelling support in GORE tools. In particu-

lar, with an increased number of evaluated models, we will be able to, for example,

identify thresholds for suggesting merging and/or decomposing model elements to

reduce complexity of an i* model. As a cross-validation for those thresholds, we plan

to conduct an experiment with requirements engineers to assess the extent to which

those thresholds are correlated with an increased difficulty in i* model comprehen-

sion. We also plan to define and apply refactoring patterns for GORE models.

Acknowledgments. The authors would like to thank FCT/UNL and CITI – PEst-

OE/EEI/UI0527/2011, for the financial support for this work.

References

1. Van Lamsweerde, A.: Goal-oriented requirements engineering: a guided tour. Proceedings

Fifth IEEE International Symposium on Requirements Engineering. pp. 249–262. IEEE

Comput. Soc (2001).

2. Yu, E.: Modelling Strategic Relationships for Process Reengineering, PhD dissertation,

University of Toronto, Canada, (1995).

3. Lamsweerde, A. van: Requirements Engineering: From System Goals to UML Models to

Software Specifications. Wiley (2009).

4. ITU-T: Recommendation Z.151 (10/12): User Requirements Notation (URN)–Language

definition. , Geneva, Switzerland (2012).

5. Brooks, F.P.: The Mythical Man-Month: Essays on Software Engineering. Addison-

Wesley Publishing Company, Reading, MA, EUA (1995).

6. ISO/IEC JTC1, OMG: Information technology - Object Management Group Object

Constraint Language (OCL), ISO/IEC 19507. (2012).

7. Espada, P., Goulão, M., Araújo, J.: A Framework to Evaluate Complexity and

Completeness of KAOS Goal Models. In: Salinesi, C., Norrie, M.C., and Pastor, O. (eds.)

25th International Conference on Advanced Information Systems Engineering (CAiSE

2013). pp. 562–577. Springer-Verlag Berlin Heidelberg, Valencia, Spain (2013).

8. Almeida, C., Goulão, M., Araújo, J.: A Systematic Comparison of i * Modelling Tools

Based on Syntactic and Well-formedness Rules. In: Castro, J., Horkoff, J., Maiden, N., and

Yu, E. (eds.) 6th International i* Workshop (iStar 2013), CEUR Vol-978. pp. 43–48.

CEUR Workshop Proceedings (2013).

9. i* wiki, Available at: http://istarwiki.org/ (Last access: March 2014).

10. Kolovos, D., Rose, L., García-Domínguez, A., Paige, R.: The Epsilon Book. Eclipse

Foundation (2013).

11. Steinberg, D., Budinsky, F., Paternostro, M., Merks, E.: EMF: Eclipse Modeling

Framework. Addison-Wesley Professional (2009).

12. Eclipse: GMF, Available at: http://www.eclipse.org/modeling/gmp/?project=gmf-tooling

(Last access: March 2014).

13. Eclipse: Ecore tools, Available at: http://wiki.eclipse.org/index.php/Ecore_Tools (Last

access: March 2014).

14. Basili, V.R., Caldiera, G., Rombach, H.D.: The goal question metric approach.

Encyclopedia of Software Engineering, vol. 2. pp. 528–532 (1994).

15. Castro, J., Kolp, M., Mylopoulos, J.: A Requirements-Driven Development Methodology.

International Conference on Advanced Information Systems Engineering (CAiSE 2001).

pp. 108–123. Springer (2001).

16. Silva, C., Castro, J., Tedesco, P., Silva, I.: Describing Agent-Oriented Design Patterns in

Tropos. Brazilian Symposium on Software Engineering (SBES 2005). pp. 10–25 (2005).

17. Lockerbie, J., Maiden, N.A.M., Engmann, J., Randall, D., Jones, S., Bush, D.: Exploring

the impact of software requirements on system-wide goals: a method using satisfaction

arguments and i* goal modelling. Requir. Eng. 17, 227–254 (2011).

18. Brown, W.J., Malveau, R.C., McCormick, H.W., Mowbray, T.J.: AntiPatterns:

Refactoring Software, Architectures, and Projects in Crisis. Wiley (1998).

19. Horkoff, J., Yu, E.: Comparison and evaluation of goal-oriented satisfaction analysis

techniques. Requir. Eng. 18, 199–222 (2012).

20. Hilts, A., Yu, E.: Design and evaluation of the goal-oriented design knowledge library

framework. Proc. 2012 iConference (iConference ’12). 384–391 (2012).

21. Ramos, R., Castro, J., Araújo, J., Moreira, A., Alencar, F., Santos, E., Penteado, R., Carlos,

S., Paulo, S.: AIRDoc – An Approach to Improve Requirements Documents. Brazilian

Symposium on Software Engineering (SBES 2008). (2008).

22. De Vasconcelos, A.M.L., de la Vara, J.L., Sanchez, J., Pastor, O.: Towards CMMI-

compliant Business Process-Driven Requirements Engineering. Eighth Int. Conf. Qual.

Inf. Commun. Technol. (QUATIC 2012) 193–198 (2012).

23. Franch, X., Grau, G.: Towards a Catalogue of Patterns for Defining Metrics over i *

Models. 20th International Conference on Advanced Information Systems Engineering

(CAiSE 2008). pp. 197–212. Springer (2008).

24. Franch, X.: A Method for the Definition of Metrics over i * Models. 21st International

Conference on Advanced Information Systems Engineering (CAiSE 2009). pp. 201–215.

Springer, Amsterdam, Netherlands (2009).

